論文の概要: UniNL: Aligning Representation Learning with Scoring Function for OOD
Detection via Unified Neighborhood Learning
- arxiv url: http://arxiv.org/abs/2210.10722v1
- Date: Wed, 19 Oct 2022 17:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 14:18:30.912620
- Title: UniNL: Aligning Representation Learning with Scoring Function for OOD
Detection via Unified Neighborhood Learning
- Title(参考訳): UniNL:一元学習によるOOD検出のためのスコーリング機能付き表現学習
- Authors: Yutao Mou, Pei Wang, Keqing He, Yanan Wu, Jingang Wang, Wei Wu, Weiran
Xu
- Abstract要約: 我々は,OODの意図を検出するために,統一された近傍学習フレームワーク (UniNL) を提案する。
具体的には、表現学習のためのK-nearest neighbor contrastive learning(KNCL)を設計し、OOD検出のためのKNNベースのスコアリング機能を導入する。
- 参考スコア(独自算出の注目度): 32.69035328161356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting out-of-domain (OOD) intents from user queries is essential for
avoiding wrong operations in task-oriented dialogue systems. The key challenge
is how to distinguish in-domain (IND) and OOD intents. Previous methods ignore
the alignment between representation learning and scoring function, limiting
the OOD detection performance. In this paper, we propose a unified neighborhood
learning framework (UniNL) to detect OOD intents. Specifically, we design a
K-nearest neighbor contrastive learning (KNCL) objective for representation
learning and introduce a KNN-based scoring function for OOD detection. We aim
to align representation learning with scoring function. Experiments and
analysis on two benchmark datasets show the effectiveness of our method.
- Abstract(参考訳): タスク指向対話システムにおける誤った操作を避けるためには,ユーザクエリからドメイン外インテント(ood)を検出することが不可欠である。
重要な課題は、ドメイン内(IND)とOODの意図を区別する方法です。
従来の手法では、表象学習とスコアリング関数のアライメントを無視し、ood検出性能を制限した。
本稿では,OODの意図を検出するため,統一的な近傍学習フレームワーク(UniNL)を提案する。
具体的には、表現学習のためのK-nearest neighbor contrastive learning(KNCL)を設計し、OOD検出のためのKNNベースのスコアリング機能を導入する。
我々は,表現学習と得点関数の整合性を目指す。
2つのベンチマークデータセットの実験と分析により,本手法の有効性が示された。
関連論文リスト
- Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection [18.275098909064127]
本研究では,大規模言語モデル(LLM)のための新しい微調整フレームワークを提案する。
ダイバーシティグラウンドのプロンプトチューニング手法を用いて,各IDクラスのセマンティックプロトタイプを構築した。
徹底的な評価のために,本手法を一般的な微調整手法と比較した。
論文 参考訳(メタデータ) (2024-09-17T12:07:17Z) - TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
視覚言語表現を用いたOOD検出のための新しいアプローチである textbfTagOOD を提案する。
TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
論文 参考訳(メタデータ) (2024-08-28T06:37:59Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - OOD Aware Supervised Contrastive Learning [13.329080722482187]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習モデルの安全なデプロイにおいて重要な問題である。
我々は、Supervised Contrastive (SupCon)トレーニングで学んだ強力な表現を活用し、OODデータに対する堅牢性を学ぶための総合的なアプローチを提案する。
我々の解は単純で効率的であり、閉集合教師付きコントラスト表現学習の自然な拡張として機能する。
論文 参考訳(メタデータ) (2023-10-03T10:38:39Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning [37.36999826208225]
本稿では,数発のアウト・オブ・ディストリビューション(OOD)検出のための新しい視覚言語プロンプト学習手法を提案する。
LoCoOpは、トレーニング中にCLIPローカル機能の一部をOOD機能として利用するOOD正規化を実行する。
LoCoOpは、既存のゼロショットと完全に教師付き検出方法より優れている。
論文 参考訳(メタデータ) (2023-06-02T06:33:08Z) - Out-of-Domain Intent Detection Considering Multi-Turn Dialogue Contexts [91.43701971416213]
我々は,OODインテント検出タスクにおけるマルチターンコンテキストをモデル化するためのコンテキスト認識型OODインテント検出(Caro)フレームワークを提案する。
CaroはF1-OODスコアを29%以上改善することで、マルチターンOOD検出タスクの最先端性能を確立している。
論文 参考訳(メタデータ) (2023-05-05T01:39:21Z) - A Hybrid Architecture for Out of Domain Intent Detection and Intent
Discovery [0.0]
Out of Scope (OOS) と Out of Domain (OOD) の入力はタスク指向システムに問題をもたらす可能性がある。
タスク指向対話システムにおいて、Intent Detectionのモデルをトレーニングするためにラベル付きデータセットが必要である。
ラベル付きデータセットの作成には時間がかかり、人的リソースが必要です。
その結果,OOD/OOS Intent Detection と Intent Discovery の双方のモデルが優れた結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-07T18:49:13Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。