論文の概要: TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning
- arxiv url: http://arxiv.org/abs/2408.15566v1
- Date: Wed, 28 Aug 2024 06:37:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:03:09.234817
- Title: TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning
- Title(参考訳): TagOOD:視覚言語表現と授業センター学習によるアウト・オブ・ディストリビューション検出のための新しいアプローチ
- Authors: Jinglun Li, Xinyu Zhou, Kaixun Jiang, Lingyi Hong, Pinxue Guo, Zhaoyu Chen, Weifeng Ge, Wenqiang Zhang,
- Abstract要約: 視覚言語表現を用いたOOD検出のための新しいアプローチである textbfTagOOD を提案する。
TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
- 参考スコア(独自算出の注目度): 26.446233594630087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal fusion, leveraging data like vision and language, is rapidly gaining traction. This enriched data representation improves performance across various tasks. Existing methods for out-of-distribution (OOD) detection, a critical area where AI models encounter unseen data in real-world scenarios, rely heavily on whole-image features. These image-level features can include irrelevant information that hinders the detection of OOD samples, ultimately limiting overall performance. In this paper, we propose \textbf{TagOOD}, a novel approach for OOD detection that leverages vision-language representations to achieve label-free object feature decoupling from whole images. This decomposition enables a more focused analysis of object semantics, enhancing OOD detection performance. Subsequently, TagOOD trains a lightweight network on the extracted object features to learn representative class centers. These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection. Finally, our approach efficiently detects OOD samples by calculating distance-based metrics as OOD scores between learned centers and test samples. We conduct extensive experiments to evaluate TagOOD on several benchmark datasets and demonstrate its superior performance compared to existing OOD detection methods. This work presents a novel perspective for further exploration of multimodal information utilization in OOD detection, with potential applications across various tasks.
- Abstract(参考訳): 視覚や言語などのデータを活用するマルチモーダル融合が急速に普及している。
このリッチなデータ表現は、様々なタスクのパフォーマンスを向上させる。
AIモデルが現実のシナリオで目に見えないデータに遭遇する重要な領域である、アウト・オブ・ディストリビューション(OOD)検出の既存手法は、全体像機能に大きく依存している。
これらの画像レベルの機能には、OODサンプルの検出を妨げる無関係な情報が含まれ、最終的には全体的なパフォーマンスが制限される。
本稿では,OOD 検出のための新しい手法である \textbf{TagOOD} を提案する。
この分解により、オブジェクトセマンティクスのより集中的な分析が可能になり、OOD検出性能が向上する。
その後、TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
最後に,本手法は,学習センタとテストサンプル間のOODスコアとして距離に基づく測定値を計算することで,OODサンプルを効率的に検出する。
我々は、いくつかのベンチマークデータセット上でTagOODを評価するための広範囲な実験を行い、既存のOOD検出手法と比較して優れた性能を示す。
本研究は,OOD検出におけるマルチモーダル情報利用のさらなる探索に向けた新たな視点を提示する。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distriion (OOD) は未知のクラスからサンプルを識別することを目的としている。
我々は,大規模なコーパスデータベースから大量の負のラベルを抽出する,NegLabelと呼ばれる新しいポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:19:52Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - Class Relevance Learning For Out-of-distribution Detection [16.029229052068]
本稿では,OOD検出に適したクラス関連学習手法を提案する。
本手法は,OODパイプライン内のクラス間関係を戦略的に活用し,総合的なクラス関連学習フレームワークを確立する。
論文 参考訳(メタデータ) (2023-09-21T08:38:21Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models [23.302018871162186]
ゼロショット方式でテキスト画像事前学習モデルを利用する新しい1クラスオープンセットOOD検出器を提案する。
提案手法は,ドメイン内でないものを検出し,多様なOODを検出する柔軟性を提供する。
本手法は,すべてのベンチマークにおいて,従来の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-26T18:58:56Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOODは、オブジェクト検出領域の概念を利用して、マルチラベル分類タスクでOOD検出を行う方法である。
提案手法を最先端のOOD検出手法と比較し,OODベンチマークデータセットの総合的なスイートにおいて,YolOODがこれらの手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-12-05T07:52:08Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。