論文の概要: Scalable Bayesian Transformed Gaussian Processes
- arxiv url: http://arxiv.org/abs/2210.10973v1
- Date: Thu, 20 Oct 2022 02:45:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 15:26:01.883212
- Title: Scalable Bayesian Transformed Gaussian Processes
- Title(参考訳): スケーラブルベイズ変換ガウス過程
- Authors: Xinran Zhu, Leo Huang, Cameron Ibrahim, Eric Hans Lee, David Bindel
- Abstract要約: ベイズ変換ガウシアン過程(BTG)モデルは、ワープされたガウシアン過程(WGP)と完全に相反するベイズ変換ガウシアン過程(BTG)モデルである。
本稿では,BTGを用いた計算の原理的,高速な手法を提案する。
我々のフレームワークは、高速モデル予測とモデル選択の両方を可能にするために、二重スパース二次規則、厳密な量子境界、ランク1行列代数を使用する。
- 参考スコア(独自算出の注目度): 10.33253403416662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Bayesian transformed Gaussian process (BTG) model, proposed by Kedem and
Oliviera, is a fully Bayesian counterpart to the warped Gaussian process (WGP)
and marginalizes out a joint prior over input warping and kernel
hyperparameters. This fully Bayesian treatment of hyperparameters often
provides more accurate regression estimates and superior uncertainty
propagation, but is prohibitively expensive. The BTG posterior predictive
distribution, itself estimated through high-dimensional integration, must be
inverted in order to perform model prediction. To make the Bayesian approach
practical and comparable in speed to maximum-likelihood estimation (MLE), we
propose principled and fast techniques for computing with BTG. Our framework
uses doubly sparse quadrature rules, tight quantile bounds, and rank-one matrix
algebra to enable both fast model prediction and model selection. These
scalable methods allow us to regress over higher-dimensional datasets and apply
BTG with layered transformations that greatly improve its expressibility. We
demonstrate that BTG achieves superior empirical performance over MLE-based
models.
- Abstract(参考訳): ケデムとオリヴィエラによって提唱されたベイジアン変換ガウス過程(btg)モデルは、wgp(warped gaussian process)と完全にベイジアンであり、入力ウォーピングとカーネルハイパーパラメータよりも前のジョイントを辺限化する。
このハイパパラメータのベイズ的処理は、しばしばより正確な回帰推定と優れた不確実性伝播を提供するが、違法に高価である。
高次元積分により推定されるBTG後続予測分布は、モデル予測を行うために反転しなければならない。
ベイジアンアプローチを実用的かつ高速に最大自由度推定(MLE)に匹敵するものにするため,BTGを用いた計算の原理的かつ高速な手法を提案する。
我々のフレームワークは、高速モデル予測とモデル選択の両方を可能にするために、二重スパース二次規則、厳密な量子境界、ランク1行列代数を使用する。
これらのスケーラブルな手法により、高次元のデータセットに回帰し、その表現性を大幅に向上する層変換を伴うBTGを適用することができる。
BTGはMLEモデルよりも優れた経験的性能を示す。
関連論文リスト
- Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
本稿では,予測の不確かさの堅牢性を改善するために,Maternカーネルのスムーズさと長大パラメータを推定するアルゴリズムを提案する。
数値実験で示すように,高いスケーラビリティを維持しつつ,残余可能性よりも改善されたUQを実現する。
論文 参考訳(メタデータ) (2022-09-22T19:23:37Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Bayesian Active Learning with Fully Bayesian Gaussian Processes [0.0]
ラベル付きデータが乏しい、あるいは入手が難しいアクティブラーニングでは、このトレードオフを無視することは、非効率なクエリを引き起こす可能性がある。
取得関数にバイアス分散トレードオフを組み込むことで、不要で高価なデータラベリングが軽減されることを示す。
論文 参考訳(メタデータ) (2022-05-20T13:52:04Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
変数の誘導に基づく変分推論手法はガウス過程(GP)モデルにおけるスケーラブルな推定のためのエレガントなフレームワークを提供する。
この研究において、変分フレームワークにおけるインプットの最大化は最適な性能をもたらすという共通の知恵に挑戦する。
論文 参考訳(メタデータ) (2020-03-06T08:53:18Z) - Approximate Inference for Fully Bayesian Gaussian Process Regression [11.47317712333228]
ガウス過程モデルにおける学習は、平均と共分散関数のハイパーパラメータの適応を通じて起こる。
textitFully Bayesian Process Regression (GPR) と呼ぶGPの階層的仕様において、後方超過パラメータを推論する別の学習方法がある。
ベンチマークデータセットを用いてベイズGPRの予測性能を解析する。
論文 参考訳(メタデータ) (2019-12-31T17:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。