論文の概要: Approximate Inference for Fully Bayesian Gaussian Process Regression
- arxiv url: http://arxiv.org/abs/1912.13440v2
- Date: Mon, 6 Apr 2020 14:22:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 20:25:08.523127
- Title: Approximate Inference for Fully Bayesian Gaussian Process Regression
- Title(参考訳): 完全ベイズガウス過程回帰に対する近似推論
- Authors: Vidhi Lalchand and Carl Edward Rasmussen
- Abstract要約: ガウス過程モデルにおける学習は、平均と共分散関数のハイパーパラメータの適応を通じて起こる。
textitFully Bayesian Process Regression (GPR) と呼ぶGPの階層的仕様において、後方超過パラメータを推論する別の学習方法がある。
ベンチマークデータセットを用いてベイズGPRの予測性能を解析する。
- 参考スコア(独自算出の注目度): 11.47317712333228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning in Gaussian Process models occurs through the adaptation of
hyperparameters of the mean and the covariance function. The classical approach
entails maximizing the marginal likelihood yielding fixed point estimates (an
approach called \textit{Type II maximum likelihood} or ML-II). An alternative
learning procedure is to infer the posterior over hyperparameters in a
hierarchical specification of GPs we call \textit{Fully Bayesian Gaussian
Process Regression} (GPR). This work considers two approximation schemes for
the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC)
yielding a sampling-based approximation and 2) Variational Inference (VI) where
the posterior over hyperparameters is approximated by a factorized Gaussian
(mean-field) or a full-rank Gaussian accounting for correlations between
hyperparameters. We analyze the predictive performance for fully Bayesian GPR
on a range of benchmark data sets.
- Abstract(参考訳): ガウス過程モデルの学習は平均と共分散関数のハイパーパラメータの適応を通じて行われる。
古典的アプローチは、固定点推定( \textit{Type II max maximum} または ML-II と呼ばれるアプローチ)をもたらす限界確率を最大化する。
もう一つの学習手順は、GPの階層的な仕様である「textit{Fully Bayesian Gaussian Process Regression} (GPR)」において、ハイパーパラメータの後方を推論することである。
この研究は、難解なハイパーパラメーター後部に対する2つの近似スキームについて考察する。
1)ハミルトニアン・モンテカルロ(HMC)のサンプリングに基づく近似と近似
2) ハイパーパラメータ間の相関関係を因数化ガウス的(平均場)またはフルランクガウス的(フルランクガウス的)に近似した変分推論(VI)。
ベンチマークデータセットを用いてベイズGPRの予測性能を解析する。
関連論文リスト
- Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Sparse Gaussian Process Hyperparameters: Optimize or Integrate? [5.949779668853556]
本稿では, MCMC をハイパーパラメーター後部から試料として用いたスパースガウス過程回帰法を提案する。
本稿では,文学における自然ベースラインと変分GP(SVGP)とを,広範な計算解析とともに比較する。
論文 参考訳(メタデータ) (2022-11-04T14:06:59Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Noise Estimation in Gaussian Process Regression [1.5002438468152661]
提案手法は, 相関誤差の分散と雑音の分散を, 限界確率関数の最大化に基づいて推定することができる。
従来のパラメータ最適化と比較して,提案手法の計算上の利点とロバスト性を示す。
論文 参考訳(メタデータ) (2022-06-20T19:36:03Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
未知のハイパーパラメータを持つ設定において、ロバストなガウス過程の均一なエラー境界を導入する。
提案手法はハイパーパラメータの空間における信頼領域を計算し,モデル誤差に対する確率的上限を求める。
実験により、バニラ法やベイズ法よりもバニラ法の方がはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-09-06T17:10:01Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Laplace Matching for fast Approximate Inference in Generalized Linear
Models [27.70274403550477]
本論文では,高い近似品質を実現しつつ,計算的に安価に設計した近似推論フレームワークを提案する。
我々が emphLaplace Matching と呼ぶこの概念は、指数群のパラメータ空間間の閉形式、近似、双方向変換を含む。
これにより、GLMにおける推論を(小さな近似誤差で)共役推論に変換する。
論文 参考訳(メタデータ) (2021-05-07T08:25:17Z) - Marginalised Gaussian Processes with Nested Sampling [10.495114898741203]
ガウス過程(GP)モデルは、カーネル関数によって制御される帰納バイアスを持つ関数上の豊富な分布である。
本研究は,Nested Smpling (NS) を用いてカーネル関数のハイパーパラメータを疎外する学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T16:04:35Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
本稿では,ガウス過程(GP)レグレッションと統合された新しい変数選択手法を提案する。
パラメータの調整と推定の精度を,選択したベンチマーク手法を用いて評価した。
論文 参考訳(メタデータ) (2020-08-25T01:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。