論文の概要: MGTUNet: An new UNet for colon nuclei instance segmentation and
quantification
- arxiv url: http://arxiv.org/abs/2210.10981v2
- Date: Fri, 26 Jan 2024 13:55:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-29 18:59:32.839245
- Title: MGTUNet: An new UNet for colon nuclei instance segmentation and
quantification
- Title(参考訳): MGTUNet: 大腸核インスタンスのセグメンテーションと定量化のための新しいUNet
- Authors: Liangrui Pan, Lian Wang, Zhichao Feng, Zhujun Xu, Liwen Xu, Shaoliang
Peng
- Abstract要約: 本稿では,MGTUNet と呼ばれる UNet フレームワークをベースとした核処理のための新しい UNet モデルを提案する。
3つの評価指標とモデルのパラメータサイズを比較することで、MGTUNetはPQで0.6254、mPQで0.6359、R2で0.8695を得た。
- 参考スコア(独自算出の注目度): 3.693770437824002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colorectal cancer (CRC) is among the top three malignant tumor types in terms
of morbidity and mortality. Histopathological images are the gold standard for
diagnosing colon cancer. Cellular nuclei instance segmentation and
classification, and nuclear component regression tasks can aid in the analysis
of the tumor microenvironment in colon tissue. Traditional methods are still
unable to handle both types of tasks end-to-end at the same time, and have poor
prediction accuracy and high application costs. This paper proposes a new UNet
model for handling nuclei based on the UNet framework, called MGTUNet, which
uses Mish, Group normalization and transposed convolution layer to improve the
segmentation model, and a ranger optimizer to adjust the SmoothL1Loss values.
Secondly, it uses different channels to segment and classify different types of
nucleus, ultimately completing the nuclei instance segmentation and
classification task, and the nuclei component regression task simultaneously.
Finally, we did extensive comparison experiments using eight segmentation
models. By comparing the three evaluation metrics and the parameter sizes of
the models, MGTUNet obtained 0.6254 on PQ, 0.6359 on mPQ, and 0.8695 on R2.
Thus, the experiments demonstrated that MGTUNet is now a state-of-the-art
method for quantifying histopathological images of colon cancer.
- Abstract(参考訳): 大腸癌(CRC)は死亡率と死亡率で上位3つの悪性腫瘍の1つである。
病理組織像は大腸癌診断の金本位制である。
細胞核インスタンスのセグメンテーションと分類、および核成分の回帰タスクは、大腸組織における腫瘍微小環境の分析に役立つ。
従来の手法では、両方のタスクをエンドツーエンドで同時に扱うことができず、予測精度が低く、アプリケーションコストも高い。
本稿では,Mish, Group normalization, transposed convolution layer を用いてセグメント化モデルを改善する UNet フレームワーク MGTUNet と,SmoothL1Loss 値を調整するレンジャー最適化器を提案する。
第二に、異なるチャネルを使用して異なる種類の核を分割し分類し、最終的に核のインスタンスのセグメンテーションと分類タスクを完了する。
最後に,8つのセグメンテーションモデルを用いた広範囲比較実験を行った。
3つの評価指標とモデルのパラメータサイズを比較することで、MGTUNetはPQで0.6254、mPQで0.6359、R2で0.8695を得た。
その結果,MGTUNetは大腸癌の病理組織像を定量化するための最先端の手法であることがわかった。
関連論文リスト
- A three in one bottom-up framework for simultaneous semantic
segmentation, instance segmentation and classification of multi-organ nuclei
in digital cancer histology [3.2228025627337864]
デジタル組織学における核の同時セグメンテーションと分類は、コンピュータによるがん診断において重要な役割を担っている。
最も達成されたバイナリとマルチクラスのPanoptic Quality (PQ)は、それぞれ0.68 bPQと0.49 mPQである。
この作業は、以前のモデルを同時インスタンスのセグメンテーションと分類に拡張します。
論文 参考訳(メタデータ) (2023-08-22T04:10:14Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Domain-specific transfer learning in the automated scoring of
tumor-stroma ratio from histopathological images of colorectal cancer [1.2264932946286657]
腫瘍-ストローマ比 (TSR) は多くの種類の固形腫瘍の予後因子である。
この方法は、大腸癌組織を分類するために訓練された畳み込みニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2022-12-30T12:27:27Z) - Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of
Head and Neck Cancers with PET/CT images [6.361835964390572]
3D nnU-Netアーキテクチャは原発性腫瘍とリンパ節の自動分節に同期的に採用された。
従来の放射能の特徴のみを含む3つの予後モデルが構築された。
セグメンテーションと予後タスクの評価指標としてDice scoreとC-indexが用いられた。
論文 参考訳(メタデータ) (2022-11-18T10:31:26Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
本稿では, 深層学習手法を用いて, 好気性ヌクレオラオーガナイザ領域 (AgNOR) 染色スライダを解析する方法を提案する。
以上の結果から,バックボーンとしてResNet-18やResNet-34を用いたU-Netを用いたセマンティックセマンティックセマンティックセマンティクスは類似した結果を示す。
最も優れたモデルは、それぞれ0.83、0.92、0.99の核、クラスター、衛星のIoUを示す。
論文 参考訳(メタデータ) (2022-10-19T15:15:32Z) - MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised
Segmentation [9.227037203895533]
本稿では,相互情報(MI)に基づく非教師なし領域適応(UDA)手法を提案する。
核は、様々な種類のがんの構造と外観に大きく異なり、あるがんタイプで訓練し、別のがんタイプでテストすると、ディープラーニングモデルの性能が低下する。
論文 参考訳(メタデータ) (2022-06-29T07:24:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
重なり合う核を正確に分離するために、曲げ損失正規化器を備えた新しいマルチタスク学習ネットワークを提案する。
新たに提案されたマルチタスク学習アーキテクチャは、3つのタスクから共有表現を学習することで一般化を促進する。
提案した曲げ損失は,輪郭点を大きな曲率で囲むために高いペナルティを定義し,小さな曲率で凸輪郭点に小さなペナルティを適用した。
論文 参考訳(メタデータ) (2021-09-30T17:29:44Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。