論文の概要: PSA-Det3D: Pillar Set Abstraction for 3D object Detection
- arxiv url: http://arxiv.org/abs/2210.10983v1
- Date: Thu, 20 Oct 2022 03:05:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 13:38:41.199895
- Title: PSA-Det3D: Pillar Set Abstraction for 3D object Detection
- Title(参考訳): PSA-Det3D:3Dオブジェクト検出のためのピラーセット抽象化
- Authors: Zhicong Huang, Jingwen Zhao, Zhijie Zheng, Dihu Chena, Haifeng Hu
- Abstract要約: 我々は,小物体の検出性能を向上させるために,柱集合抽象化(PSA)と前景点補償(FPC)を提案する。
KITTI 3D 検出ベンチマーク実験の結果,提案した PSA-Det3D は他のアルゴリズムよりも高い精度で小物体検出を行うことができた。
- 参考スコア(独自算出の注目度): 14.788139868324155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Small object detection for 3D point cloud is a challenging problem because of
two limitations: (1) Perceiving small objects is much more diffcult than normal
objects due to the lack of valid points. (2) Small objects are easily blocked
which breaks the shape of their meshes in 3D point cloud. In this paper, we
propose a pillar set abstraction (PSA) and foreground point compensation (FPC)
and design a point-based detection network, PSA-Det3D, to improve the detection
performance for small object. The PSA embeds a pillar query operation on the
basis of set abstraction (SA) to expand its receptive field of the network,
which can aggregate point-wise features effectively. To locate more occluded
objects, we persent a proposal generation layer consisting of a foreground
point segmentation and a FPC module. Both the foreground points and the
estimated centers are finally fused together to generate the detection result.
The experiments on the KITTI 3D detection benchmark show that our proposed
PSA-Det3D outperforms other algorithms with high accuracy for small object
detection.
- Abstract(参考訳): 3dポイントクラウドのための小さなオブジェクト検出は、(1)小さなオブジェクトを知覚することは、有効なポイントがないため、通常のオブジェクトよりもはるかに差分的である、という2つの制限があるため、難しい問題である。
2)小さな物体は容易にブロックされ、メッシュの形状を3Dポイントクラウドで破壊する。
本稿では,柱集合抽象化 (psa) と前景点補償 (fpc) を提案し,小物体の検出性能を向上させるため,点に基づく検出ネットワーク psa-det3d を設計した。
PSAは、セット抽象化(SA)に基づいて柱クエリ操作を組み込み、ネットワークの受容領域を拡張し、ポイントワイズ機能を効果的に集約することができる。
より隠蔽されたオブジェクトを見つけるために、フォアグラウンドポイントセグメンテーションとFPCモジュールからなる提案生成層を挿入する。
前景点と推定中心の両方を最終的に融合して検出結果を生成する。
KITTI 3D 検出ベンチマーク実験の結果,提案した PSA-Det3D は他のアルゴリズムよりも高い精度で小物体検出を行うことができた。
関連論文リスト
- OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
OPENと呼ばれる新しい多視点3Dオブジェクト検出器を提案する。
我々の主目的は、提案したオブジェクト指向位置埋め込みを通して、オブジェクトワイド情報をネットワークに効果的に注入することである。
OPENは、nuScenesテストベンチマークで64.4%のNDSと56.7%のmAPで、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-07-15T14:29:15Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
3Dポイントクラウドから3Dオブジェクトを直接検出するためのシンプルで効果的な方法を紹介します。
本手法は, 点群内のすべての点から物体の特徴を, 変圧器 citevaswaniattention における注意機構の助けを借りて計算する。
ベルやホイッスルが少ないため,ScanNet V2とSUN RGB-Dの2つのベンチマークで最先端の3Dオブジェクト検出性能を実現する。
論文 参考訳(メタデータ) (2021-04-01T17:59:36Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
単眼画像から3Dバウンディングボックスを推定することは、自動運転に不可欠な要素です。
本研究では, 各サブタスクがもたらす影響を定量化し, 局所化誤差を求めることが, モノクロ3次元検出の抑制に欠かせない要因である。
論文 参考訳(メタデータ) (2021-03-30T10:38:01Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDARベースの3Dオブジェクト検出は、自動運転車に大きな影響を与える。
LiDARの固有特性の制限により、センサーから遠く離れた物体において、より少ない点が収集される。
そこで本研究では,SIENetという2段階の3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T07:45:09Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
オブジェクトレベルのアンカーを用いた既存のメソッドとは逆のアプローチを論じる。
構成モデルに着想を得て、内部の空でないボクセルの組成として、ホットスポットと呼ばれる物体を提案する。
提案手法は,OHSに基づく新しい地中真理割当て戦略を用いたアンカーフリー検出ヘッドを提案する。
論文 参考訳(メタデータ) (2019-12-30T03:02:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。