Knowledge-Enhanced Relation Extraction Dataset
- URL: http://arxiv.org/abs/2210.11231v3
- Date: Tue, 25 Apr 2023 08:46:30 GMT
- Title: Knowledge-Enhanced Relation Extraction Dataset
- Authors: Yucong Lin, Hongming Xiao, Jiani Liu, Zichao Lin, Keming Lu, Feifei
Wang, Wei Wei
- Abstract summary: There is currently no public dataset that encompasses both evidence sentences and knowledge graphs for knowledge-enhanced relation extraction.
We introduce the Knowledge-Enhanced Relation Extraction dataset (KERED)
KERED annotates each sentence with a relational fact, and it provides knowledge context for entities through entity linking.
- Score: 8.612433805862619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, knowledge-enhanced methods leveraging auxiliary knowledge graphs
have emerged in relation extraction, surpassing traditional text-based
approaches. However, to our best knowledge, there is currently no public
dataset available that encompasses both evidence sentences and knowledge graphs
for knowledge-enhanced relation extraction. To address this gap, we introduce
the Knowledge-Enhanced Relation Extraction Dataset (KERED). KERED annotates
each sentence with a relational fact, and it provides knowledge context for
entities through entity linking. Using our curated dataset, We compared
contemporary relation extraction methods under two prevalent task settings:
sentence-level and bag-level. The experimental result shows the knowledge
graphs provided by KERED can support knowledge-enhanced relation extraction
methods. We believe that KERED offers high-quality relation extraction datasets
with corresponding knowledge graphs for evaluating the performance of
knowledge-enhanced relation extraction methods. Our dataset is available at:
\url{https://figshare.com/projects/KERED/134459}
Related papers
- Leveraging Knowledge Graph Embeddings to Enhance Contextual
Representations for Relation Extraction [0.0]
We propose a relation extraction approach based on the incorporation of pretrained knowledge graph embeddings at the corpus scale into the sentence-level contextual representation.
We conducted a series of experiments which revealed promising and very interesting results for our proposed approach.
arXiv Detail & Related papers (2023-06-07T07:15:20Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
We propose HIORE, a new method for unified entity relation extraction.
The key insight is to leverage the complex association among word pairs, which contains richer information than the first-order word-by-word interactions.
Experiments show that HIORE achieves the state-of-the-art performance on relation extraction and an improvement of 1.11.8 F1 points over the prior best unified model.
arXiv Detail & Related papers (2023-05-07T14:57:42Z) - REKnow: Enhanced Knowledge for Joint Entity and Relation Extraction [30.829001748700637]
Relation extraction is a challenging task that aims to extract all hidden relational facts from the text.
There is no unified framework that works well under various relation extraction settings.
We propose a knowledge-enhanced generative model to mitigate these two issues.
Our model achieves superior performance on multiple benchmarks and settings, including WebNLG, NYT10, and TACRED.
arXiv Detail & Related papers (2022-06-10T13:59:38Z) - Scientific and Technological Text Knowledge Extraction Method of based
on Word Mixing and GRU [25.00844482891488]
knowledge extraction task is to extract triple relations from unstructured text data.
"pipeline" method is to separate named entity recognition and entity relationship extraction.
"Joint extraction" is end-to-end model implemented by neural network to realize entity recognition and relationship extraction.
arXiv Detail & Related papers (2022-03-31T14:52:35Z) - KGE-CL: Contrastive Learning of Knowledge Graph Embeddings [64.67579344758214]
We propose a simple yet efficient contrastive learning framework for knowledge graph embeddings.
It can shorten the semantic distance of the related entities and entity-relation couples in different triples.
It can yield some new state-of-the-art results, achieving 51.2% MRR, 46.8% Hits@1 on the WN18RR dataset, and 59.1% MRR, 51.8% Hits@1 on the YAGO3-10 dataset.
arXiv Detail & Related papers (2021-12-09T12:45:33Z) - Joint Biomedical Entity and Relation Extraction with Knowledge-Enhanced
Collective Inference [42.255596963210564]
We present a novel framework that utilizes external knowledge for joint entity and relation extraction named KECI.
KeCI takes a collective approach to link mention spans to entities by integrating global relational information into local representations.
Our experimental results show that the framework is highly effective, achieving new state-of-the-art results in two different benchmark datasets.
arXiv Detail & Related papers (2021-05-27T21:33:34Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Context-Enhanced Entity and Relation Embedding for Knowledge Graph
Completion [2.580765958706854]
We propose a model named AggrE, which conducts efficient aggregations on entity context and relation context in multi-hops.
Experiment results show that AggrE is competitive to existing models.
arXiv Detail & Related papers (2020-12-13T09:20:42Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
We propose a relational message passing method for knowledge graph completion.
It passes relational messages among edges iteratively to aggregate neighborhood information.
Results show our method outperforms stateof-the-art knowledge completion methods by a large margin.
arXiv Detail & Related papers (2020-02-17T03:33:41Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.