Analyzing the Influence of Knowledge Graph Information on Relation Extraction
- URL: http://arxiv.org/abs/2506.16343v1
- Date: Thu, 19 Jun 2025 14:21:08 GMT
- Title: Analyzing the Influence of Knowledge Graph Information on Relation Extraction
- Authors: Cedric Möller, Ricardo Usbeck,
- Abstract summary: We conduct experiments on multiple datasets, each varying in the number of relations, training examples, and underlying knowledge graphs.<n>Our results demonstrate that integrating knowledge graph information significantly enhances performance.<n>We evaluate the contribution of knowledge graph-based features by combining established relation extraction methods with graph-aware Neural Bellman-Ford networks.
- Score: 6.731053352452566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine the impact of incorporating knowledge graph information on the performance of relation extraction models across a range of datasets. Our hypothesis is that the positions of entities within a knowledge graph provide important insights for relation extraction tasks. We conduct experiments on multiple datasets, each varying in the number of relations, training examples, and underlying knowledge graphs. Our results demonstrate that integrating knowledge graph information significantly enhances performance, especially when dealing with an imbalance in the number of training examples for each relation. We evaluate the contribution of knowledge graph-based features by combining established relation extraction methods with graph-aware Neural Bellman-Ford networks. These features are tested in both supervised and zero-shot settings, demonstrating consistent performance improvements across various datasets.
Related papers
- Graph Neural Network-Based Entity Extraction and Relationship Reasoning in Complex Knowledge Graphs [1.5998200006932823]
This study proposed a knowledge graph entity extraction and relationship reasoning algorithm based on a graph neural network.
By building an end-to-end joint model, this paper achieves efficient recognition and reasoning of entities and relationships.
arXiv Detail & Related papers (2024-11-19T16:23:49Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
We show that minimizing point-prediction losses does not guarantee proper learning of latent relational information.<n>We propose a sampling-based method that solves this joint learning task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Exploring Correlations of Self-Supervised Tasks for Graphs [6.977921096191354]
This paper aims to provide a fresh understanding of graph self-supervised learning based on task correlations.
We evaluate the performance of the representations trained by one specific task on other tasks and define correlation values to quantify task correlations.
We propose Graph Task Correlation Modeling (GraphTCM) to illustrate the task correlations and utilize it to enhance graph self-supervised training.
arXiv Detail & Related papers (2024-05-07T12:02:23Z) - Graph Relation Distillation for Efficient Biomedical Instance
Segmentation [80.51124447333493]
We propose a graph relation distillation approach for efficient biomedical instance segmentation.
We introduce two graph distillation schemes deployed at both the intra-image level and the inter-image level.
Experimental results on a number of biomedical datasets validate the effectiveness of our approach.
arXiv Detail & Related papers (2024-01-12T04:41:23Z) - Rule-Guided Joint Embedding Learning over Knowledge Graphs [6.831227021234669]
This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings.
For contextual information, we assess its significance through confidence and relatedness metrics.
We validate our model performance with thorough experiments on two established benchmark datasets.
arXiv Detail & Related papers (2023-12-01T19:58:31Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
We propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges.
We also introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically.
arXiv Detail & Related papers (2023-05-31T10:36:10Z) - Knowledge-Enhanced Relation Extraction Dataset [8.612433805862619]
There is currently no public dataset that encompasses both evidence sentences and knowledge graphs for knowledge-enhanced relation extraction.
We introduce the Knowledge-Enhanced Relation Extraction dataset (KERED)
KERED annotates each sentence with a relational fact, and it provides knowledge context for entities through entity linking.
arXiv Detail & Related papers (2022-10-19T13:23:10Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z) - Knowledge Graph Embedding using Graph Convolutional Networks with
Relation-Aware Attention [3.803929794912623]
Knowledge graph embedding methods learn embeddings of entities and relations in a low dimensional space.
Various graph convolutional network methods have been proposed which use different types of information to learn the features of entities and relations.
We propose a relation-aware graph attention model that leverages relation information to compute different weights to the neighboring nodes for learning embeddings of entities and relations.
arXiv Detail & Related papers (2021-02-14T17:19:44Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Out-of-Sample Representation Learning for Multi-Relational Graphs [8.956321788625894]
We study the out-of-sample representation learning problem for non-attributed knowledge graphs.
We create benchmark datasets for this task, develop several models and baselines, and provide empirical analyses and comparisons of the proposed models and baselines.
arXiv Detail & Related papers (2020-04-28T00:53:01Z) - Affinity Graph Supervision for Visual Recognition [35.35959846458965]
We propose a principled method to supervise the learning of weights in affinity graphs.
Our affinity supervision improves relationship recovery between objects, even without manually annotated relationship labels.
We show that affinity learning can also be applied to graphs built from mini-batches, for neural network training.
arXiv Detail & Related papers (2020-03-19T23:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.