PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
- URL: http://arxiv.org/abs/2502.16111v1
- Date: Sat, 22 Feb 2025 06:21:56 GMT
- Title: PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
- Authors: Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi, Jindong Gu, Zifeng Wang, Hootan Nakhost, Chitta Baral, Chen-Yu Lee, Tomas Pfister, Hamid Palangi,
- Abstract summary: We propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents.<n>Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms.
- Score: 89.60370366013142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN ($\sim$8%$\uparrow$), OlympiadBench ($\sim$4%$\uparrow$), DocFinQA ($\sim$7%$\uparrow$), and GPQA ($\sim$1%$\uparrow$). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
Related papers
- Comprehensive Benchmarking Environment for Worker Flexibility in Flexible Job Shop Scheduling Problems [0.0]
In Production Scheduling, the Flexible Job Shop Scheduling Problem (FJSSP) aims to optimize a sequence of operations and assign each to an eligible machine with varying processing times.<n>The resulting problem is called Flexible Job Shop Scheduling Problem with Worker Flexibility (FJSSP-W)<n>This paper presents a collection of 402 commonly accepted FJSSP instances and proposes an approach to extend these with worker flexibility.
arXiv Detail & Related papers (2025-01-27T15:56:12Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Efficient Prompt Optimization Through the Lens of Best Arm Identification [50.56113809171805]
This work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint.
It is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB)
arXiv Detail & Related papers (2024-02-15T05:31:13Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z) - An Efficient Merge Search Matheuristic for Maximising the Net Present
Value of Project Schedules [5.10800491975164]
Resource constrained project scheduling is an important optimisation problem with many practical applications.
We propose a new math-heuristic algorithm based on Merge Search and parallel computing to solve the resource constrained project scheduling.
arXiv Detail & Related papers (2022-10-20T13:30:23Z) - Decomposition Strategies and Multi-shot ASP Solving for Job-shop Scheduling [7.977161233209228]
Job-shop Scheduling Problem (JSP) is a well-known and challenging optimization problem in which tasks sharing a machine are to be arranged in a sequence such that encompassing jobs can be completed as early as possible.
In this paper, we investigate problem decomposition into time windows whose operations can be successively scheduled and optimized by means of multi-shot Answer Set Programming (ASP) solving.
arXiv Detail & Related papers (2022-05-16T09:33:00Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.