論文の概要: Multi-Head Cross-Attentional PPG and Motion Signal Fusion for Heart Rate
Estimation
- arxiv url: http://arxiv.org/abs/2210.11415v1
- Date: Fri, 14 Oct 2022 08:07:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 20:25:49.889250
- Title: Multi-Head Cross-Attentional PPG and Motion Signal Fusion for Heart Rate
Estimation
- Title(参考訳): 心拍数推定のためのマルチヘッドクロスアテンションppgとモーション信号融合
- Authors: Panagiotis Kasnesis, Lazaros Toumanidis, Alessio Burrello, Christos
Chatzigeorgiou and Charalampos Z. Patrikakis
- Abstract要約: 本稿では,時間的畳み込みと多頭部交差注意を利用してセンサフュージョンの有効性を向上させる新しい深層学習モデルPULSEを提案する。
3つの公開データセット上でのPULSEの性能を評価し,平均絶対誤差を7.56%削減した。
- 参考スコア(独自算出の注目度): 2.839269856680851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, Hearth Rate (HR) monitoring is a key feature of almost all
wrist-worn devices exploiting photoplethysmography (PPG) sensors. However, arm
movements affect the performance of PPG-based HR tracking. This issue is
usually addressed by fusing the PPG signal with data produced by inertial
measurement units. Thus, deep learning algorithms have been proposed, but they
are considered too complex to deploy on wearable devices and lack the
explainability of results. In this work, we present a new deep learning model,
PULSE, which exploits temporal convolutions and multi-head cross-attention to
improve sensor fusion's effectiveness and achieve a step towards
explainability. We evaluate the performance of PULSE on three publicly
available datasets, reducing the mean absolute error by 7.56% on the most
extensive available dataset, PPG-DaLiA. Finally, we demonstrate the
explainability of PULSE and the benefits of applying attention modules to PPG
and motion data.
- Abstract(参考訳): 現在、Hearth Rate(HR)モニタリングは、光胸腺撮影(PPG)センサーを利用する、ほとんどすべての手首を縫うデバイスの主要な特徴である。
しかし、腕の動きはPPGに基づく人事追跡の性能に影響を及ぼす。
この問題は一般に、慣性測定ユニットによって生成されたデータとPSG信号を融合することで解決される。
このように、ディープラーニングアルゴリズムが提案されているが、ウェアラブルデバイスにデプロイするには複雑すぎると考えられ、結果の説明可能性に欠ける。
本研究では,時間的畳み込みとマルチヘッド・クロスアテンションを利用して,センサ融合の有効性を向上し,説明可能性への一歩を踏み出す新しいディープラーニングモデルPULSEを提案する。
我々は,3つの公開データセット上でのPULSEの性能を評価し,最も広範なデータセットであるPG-DaLiAにおいて平均絶対誤差を7.56%削減した。
最後に,ppgと動きデータに注意モジュールを適用することで,パルスの説明可能性と効果を示す。
関連論文リスト
- SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
心房細動(AF)は脳卒中、心臓病、死亡のリスクを著しく増大させる。
光胸腺造影(PPG)信号は、運動人工物や、しばしば起立条件で遭遇する他の要因による腐敗に影響を受けやすい。
本研究では,一部劣化したPSGから正確な予測の維持方法を学習するための新しい深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-04-15T01:07:08Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
エンゲージメント測定は、医療、教育、サービスに応用される。
生理的特徴と行動的特徴の使用は可能であるが、従来の生理的測定の非現実性は接触センサーの必要性により生じる。
コンタクトセンサの代替として, 教師なし光胸腺造影(胸腔鏡)の有用性を実証する。
論文 参考訳(メタデータ) (2024-04-05T20:39:16Z) - Deep adaptative spectral zoom for improved remote heart rate estimation [10.220888127527152]
Chirp-Z Transform (CZT) は、心拍数に対する狭帯域の利息の範囲までスペクトルを洗練させ、頻繁な分解能を改善し、その結果より正確な推定を可能にする。
本稿では、リモートHR推定にCZTを用いる利点を示し、新しいデータ駆動適応型CZT推定器を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:55:19Z) - Full-Body Motion Reconstruction with Sparse Sensing from Graph
Perspective [22.761692765158646]
スパースセンサーデータから3Dフルボディのポーズを推定することは、拡張現実と仮想現実における現実的な人間の動きを再現するための重要な手法である。
人体を表すためにBPG(Body Pose Graph)を使用し、その課題をグラフ不足ノードの予測問題に変換する。
提案手法の有効性は,特に下肢動作において,他のベースライン法よりも高い精度で達成できることが証明されている。
論文 参考訳(メタデータ) (2024-01-22T09:29:42Z) - Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
既存の作業では、ユーザによって報告された利用可能なPOIチェックインが、ユーザ行動の真真正な描写であると仮定している。
実際のアプリケーションシナリオでは、主観的および客観的な原因の両方のため、チェックインデータは信頼性が低い。
本稿では,ユーザチェックインの不確実性に対処するため,ベイズ強化型マルチビュー注意ネットワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T12:47:38Z) - AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking
in Real-Time [47.19339667836196]
提案するAlphaPoseは,リアルタイムに動作しながら,身体全体のポーズを正確に推定・追跡できるシステムである。
我々は,COCO-全体,COCO,PoseTrack,提案したHalpe-FullBodyポーズ推定データセットにおいて,現在の最先端手法よりも高速かつ高精度であることを示す。
論文 参考訳(メタデータ) (2022-11-07T09:15:38Z) - Embedding Temporal Convolutional Networks for Energy-Efficient PPG-Based
Heart Rate Monitoring [17.155316991045765]
Photoplethysmography (volution) センサーは非侵襲的で快適な心拍数モニタリングを可能にする。
モーションアーティファクト(MA)はモニタリングの精度に大きく影響を与え、皮膚とセンサーのインターフェースに高いばらつきをもたらす。
PPGに基づく人事推定のための計算軽量で頑健な深層学習手法を提案する。
PPGDaliaのMean Absolute Error(MAE)の3.84 Beats per Minute(BPM)という2つのベンチマークデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2022-03-01T17:04:28Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙なrの手がかりのマイニングに重点を置いている。
本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (2021-11-23T18:57:11Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
本稿では,高速ポーズ推定のためのLR表現を用いた費用対効果ネットワークの設計パラダイムであるFasterPoseを提案する。
我々は,FasterPoseのトレーニング挙動について検討し,収束を加速する新しい回帰クロスエントロピー(RCE)損失関数を定式化する。
従来のポーズ推定ネットワークと比較すると,FLOPの58%が減少し,精度が1.3%向上した。
論文 参考訳(メタデータ) (2021-07-07T13:39:08Z) - Non-contact PPG Signal and Heart Rate Estimation with Multi-hierarchical
Convolutional Network [12.119293125608976]
心拍数(HR)は人体の重要な生理的パラメータである。
本研究では,顔ビデオクリップからHRを推定できる,効率的な多階層・畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-06T03:04:27Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
既存のエンド・ツー・エンドのネットワークが難易度が低い理由を考察し,アーキテクチャ・サーチ(NAS)を用いたリモートHR計測のための強力なベースラインを確立する。
総合的な実験は、時間内テストとクロスデータセットテストの両方で3つのベンチマークデータセットで実施される。
論文 参考訳(メタデータ) (2020-04-26T05:43:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。