論文の概要: Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation
- arxiv url: http://arxiv.org/abs/2502.17460v1
- Date: Mon, 10 Feb 2025 13:33:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:22:58.721053
- Title: Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation
- Title(参考訳): 血圧推定のための心電図・PSGデータに基づく脳波基礎生体信号モデルの微調整と定量化
- Authors: Bálint Tóth, Dominik Senti, Thorir Mar Ingolfsson, Jeffrey Zweidler, Alexandre Elsig, Luca Benini, Yawei Li,
- Abstract要約: 光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
- 参考スコア(独自算出の注目度): 53.2981100111204
- License:
- Abstract: Blood pressure (BP) is a key indicator of cardiovascular health. As hypertension remains a global cause of morbidity and mortality, accurate, continuous, and non-invasive BP monitoring is therefore of paramount importance. Photoplethysmography (PPG) and electrocardiography (ECG) can potentially enable continuous BP monitoring, yet training accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors. Recently, multiple research groups explored Electroencephalographic (EEG)--based foundation models and demonstrated their exceptional ability to learn rich temporal resolution. Considering the morphological similarities between different biosignals, the question arises of whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type. In this work, we take an initial step towards generalized biosignal foundation models by investigating whether model representations learned from abundant EEG data can effectively be transferred to ECG/PPG data solely with fine-tuning, without the need for large-scale additional pre-training, for the BP estimation task. Evaluations on the MIMIC-III and VitalDB datasets demonstrate that our approach achieves near state-of-the-art accuracy for diastolic BP (mean absolute error of 1.57 mmHg) and surpasses by 1.5x the accuracy of prior works for systolic BP (mean absolute error 2.72 mmHg). Additionally, we perform dynamic INT8 quantization, reducing the smallest model size by over 3.5x (from 13.73 MB down to 3.83 MB) while preserving performance, thereby enabling unobtrusive, real-time BP monitoring on resource-constrained wearable devices.
- Abstract(参考訳): 血圧(BP)は心臓血管の健康の指標である。
高血圧が致死率や死亡率の世界的な原因であり続けているため、正確性、持続性、非侵襲性BPモニタリングが最重要視されている。
Photoplethysmography(PPG)と心電図(ECG)は、連続したBPモニタリングを可能にする可能性があるが、データ品質と患者固有の要因の変動により、正確で堅牢な機械学習(ML)モデルをトレーニングすることは困難である。
近年、複数の研究グループが脳波に基づく基礎モデルを調査し、豊かな時間分解能の学習能力を示した。
異なる生体信号間の形態的類似性を考えると、1つのモードで事前訓練されたモデルが、異なる信号タイプの精度を向上させるために効果的に活用できるかどうかが問題となる。
本研究では, BP推定タスクにおいて, 大規模事前学習を必要とせずに, 大量の脳波データから得られたモデル表現を, 微調整のみで効率的にECG/PPGデータに転送できるかどうかを検証し, 一般化された生体信号基盤モデルに向けた最初の一歩を踏み出した。
MIMIC-III と VitalDB データセットによる評価の結果,拡張型BP (平均絶対誤差 1.57 mmHg) の最先端精度が1.5倍に向上し,拡張型BP (平均絶対誤差 2.72 mmHg) の先行処理精度が1.5倍に向上した。
さらに、動的INT8量子化を行い、性能を保ちながら最小のモデルサイズを3.5倍(13.73MBから3.83MB)以上削減し、リソース制約のウェアラブルデバイス上で非邪魔でリアルタイムなBPモニタリングを可能にする。
関連論文リスト
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
我々は、新たに構築された心臓シミュレーションの大規模なデータセットに基づいて、無傷神経後部推定器を訓練する。
シミュレーションデータと実世界の測定値との整合性を改善するために,要素モデリング効果を取り入れた。
提案するフレームワークは,実世界のデータに対する予測能力を向上するために,インバイブなデータソースをさらに統合することができる。
論文 参考訳(メタデータ) (2024-12-23T13:05:17Z) - A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting [6.311504297463515]
連続血圧モニタリングは、重要なケア設定において、タイムリーな診断と介入に不可欠である。
本研究では,心電図(ECG)と光胸腺図( Photoplethysmogram)の信号を用いたパーソナライズされたBP予測モデルを提案する。
実験は,60名の被験者からBP測定を行った3つのシナリオから収集したデータセットを用いて行った。
論文 参考訳(メタデータ) (2024-09-07T04:24:15Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
本稿では,最近リリースされた生理学データベースMIMIC-IV上に構築されたトランスフォーマーベースのアーキテクチャであるTransfoRhythmフレームワークを紹介する。
本研究は,カフレスBP推定にMIMIC IVデータセットを適用した最初の研究である。
論文 参考訳(メタデータ) (2024-04-15T00:36:33Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
本研究は, 血圧推定のためのスマートフォンを用いた光プラチスモグラフィー(SPW-BP)の革新的4つの戦略を提案する。
我々は,高次正規化やデータ削除,境界信号再構成など,しばしば無視されるデータ品質改善技術を採用している。
相関とSHAP分析はBP推定を改善するための重要な特徴を同定した。
しかし, Bland-Altman 分析では系統的偏りがみられ, MAE 解析ではAAMI と BHS の精度基準を満たしていないことがわかった。
論文 参考訳(メタデータ) (2024-01-20T05:05:17Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
病院で血液圧(BP)の連続モニタリングに使われている方法のほとんどは、侵襲的である。
本研究では,光胸腺図や心電図などの非侵襲的に収集可能な信号からBPを予測するためのオートエンコーダの適用性を検討した。
非常に浅い1次元オートエンコーダは、非常に大きなデータセット上で最先端の性能でSBPとDBPを予測するために関連する特徴を抽出できることがわかった。
論文 参考訳(メタデータ) (2021-11-12T19:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。