論文の概要: Balanced Adversarial Training: Balancing Tradeoffs between Fickleness
and Obstinacy in NLP Models
- arxiv url: http://arxiv.org/abs/2210.11498v1
- Date: Thu, 20 Oct 2022 18:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 14:27:12.044248
- Title: Balanced Adversarial Training: Balancing Tradeoffs between Fickleness
and Obstinacy in NLP Models
- Title(参考訳): balanced adversarial training: nlpモデルにおける軽度と連続性のトレードオフのバランス
- Authors: Hannah Chen, Yangfeng Ji, David Evans
- Abstract要約: 本研究は, 標準的な対人訓練手法により, ファックル対人例に対してより脆弱なモデルが得られることを示す。
本研究では, 対外学習を取り入れて, 対外的対外的対外的対外的対外的対外的対外的対外的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対人的対
- 参考スコア(独自算出の注目度): 21.06607915149245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional (fickle) adversarial examples involve finding a small
perturbation that does not change an input's true label but confuses the
classifier into outputting a different prediction. Conversely, obstinate
adversarial examples occur when an adversary finds a small perturbation that
preserves the classifier's prediction but changes the true label of an input.
Adversarial training and certified robust training have shown some
effectiveness in improving the robustness of machine learnt models to fickle
adversarial examples. We show that standard adversarial training methods
focused on reducing vulnerability to fickle adversarial examples may make a
model more vulnerable to obstinate adversarial examples, with experiments for
both natural language inference and paraphrase identification tasks. To counter
this phenomenon, we introduce Balanced Adversarial Training, which incorporates
contrastive learning to increase robustness against both fickle and obstinate
adversarial examples.
- Abstract(参考訳): 従来の(フィックルな)逆例では、入力の真のラベルを変えない小さな摂動を見つけるが、分類器を混乱させて異なる予測を出力する。
逆に、敵が分類器の予測を保ちながら入力の真のラベルを変更する小さな摂動を見つけると、敵対的な例が発生する。
敵の訓練と証明された頑健な訓練は、敵の例を損なうために、機械学習モデルの堅牢性を改善する効果を示す。
提案手法は,自然言語推論とパラファーゼ識別タスクの両方を対象として実験を行い,攻撃例に対する脆弱性の軽減に重点を置いた標準的な攻撃訓練手法により,攻撃例の難易度が向上することを示す。
この現象に対処するために,コントラスト学習を取り入れたバランスド・逆行訓練を導入する。
関連論文リスト
- On the Effect of Adversarial Training Against Invariance-based
Adversarial Examples [0.23624125155742057]
この研究は、畳み込みニューラルネットワーク(CNN)における不変性に基づく逆トレーニングの効果に対処する。
本研究は,非分散型および摂動型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型を適用した場合,連続的でなく連続的に実施すべきであることを示す。
論文 参考訳(メタデータ) (2023-02-16T12:35:37Z) - The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for
Improving Adversarial Training [72.39526433794707]
敵の訓練とその変種は、敵の例に対抗して最も効果的なアプローチであることが示されている。
本稿では,モデルが類似した出力を生成することを奨励する,新たな対角訓練手法を提案する。
本手法は,最先端のロバスト性および自然な精度を実現する。
論文 参考訳(メタデータ) (2022-11-01T15:24:26Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
また, 予測誤差を誘導するために, 逆例を独立に学習した別のモデルに移すことが可能であることを示す。
本稿では,頑健な伝達可能な特徴抽出器(RTFE)と呼ばれる,ディープラーニングに基づく事前処理機構を提案する。
論文 参考訳(メタデータ) (2022-09-14T21:09:34Z) - Collaborative Adversarial Training [82.25340762659991]
本研究は, 対人的, 良性的な両例とほぼ区別できない, 協調的な事例が, 対人的訓練の強化に有効であることを示す。
そこで,コラボレーティブ・ディベザリ・トレーニング(CoAT)と呼ばれる新しい手法が提案され,新たな最先端技術が実現された。
論文 参考訳(メタデータ) (2022-05-23T09:41:41Z) - On the Impact of Hard Adversarial Instances on Overfitting in
Adversarial Training [72.95029777394186]
敵の訓練は、敵の攻撃に対してモデルを強固にするための一般的な方法である。
トレーニングインスタンスの観点から,この現象を考察する。
逆行訓練における一般化性能の低下は, 強行訓練に適合するモデルが試みた結果であることを示す。
論文 参考訳(メタデータ) (2021-12-14T12:19:24Z) - Calibrated Adversarial Training [8.608288231153304]
本稿では, 対人訓練における意味摂動の悪影響を低減させる手法であるCalibrated Adversarial Trainingを提案する。
この方法は, 新たな校正ロバスト誤差に基づいて, 摂動に対する画素レベルの適応を生成する。
論文 参考訳(メタデータ) (2021-10-01T19:17:28Z) - CLINE: Contrastive Learning with Semantic Negative Examples for Natural
Language Understanding [35.003401250150034]
本稿では,事前学習した言語モデルの堅牢性を改善するために,セマントIc負例を用いたコントラスト学習を提案する。
CLINEは、意味論的敵対攻撃下での堅牢性を改善するために、教師なしの意味論的ネガティブな例を構築している。
実験結果から,本手法は感情分析,推論,読解作業において大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-07-01T13:34:12Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Semantics-Preserving Adversarial Training [12.242659601882147]
逆行訓練は、訓練データに逆行例を含めることで、ディープニューラルネットワーク(DNN)の逆行性を改善する技術である。
本研究では,すべてのクラスで共有される画素の摂動を促すセマンティックス保存逆行訓練(SPAT)を提案する。
実験の結果,SPATは対向ロバスト性を向上し,CIFAR-10およびCIFAR-100の最先端結果を達成することがわかった。
論文 参考訳(メタデータ) (2020-09-23T07:42:14Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。