論文の概要: Learning Sample Reweighting for Accuracy and Adversarial Robustness
- arxiv url: http://arxiv.org/abs/2210.11513v1
- Date: Thu, 20 Oct 2022 18:25:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 15:28:49.620414
- Title: Learning Sample Reweighting for Accuracy and Adversarial Robustness
- Title(参考訳): 精度と逆ロバスト性のための学習サンプルの重み付け
- Authors: Chester Holtz, Tsui-Wei Weng, Gal Mishne
- Abstract要約: 本稿では,クラス条件付きマージンの概念に基づいて,個々のトレーニングサンプルによる損失の軽減を学習する,新たな逆トレーニングフレームワークを提案する。
我々の手法は、関連する手法や最先端のベースラインと比較して、クリーンかつ堅牢な精度を一貫して改善する。
- 参考スコア(独自算出の注目度): 15.591611864928659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been great interest in enhancing the robustness of neural network
classifiers to defend against adversarial perturbations through adversarial
training, while balancing the trade-off between robust accuracy and standard
accuracy. We propose a novel adversarial training framework that learns to
reweight the loss associated with individual training samples based on a notion
of class-conditioned margin, with the goal of improving robust generalization.
We formulate weighted adversarial training as a bilevel optimization problem
with the upper-level problem corresponding to learning a robust classifier, and
the lower-level problem corresponding to learning a parametric function that
maps from a sample's \textit{multi-class margin} to an importance weight.
Extensive experiments demonstrate that our approach consistently improves both
clean and robust accuracy compared to related methods and state-of-the-art
baselines.
- Abstract(参考訳): ニューラルネットワーク分類器のロバスト性向上には,ロバスト精度と標準精度とのトレードオフのバランスを保ちながら,敵対的摂動から防御する大きな関心が寄せられている。
本稿では,クラス条件付きマージンの概念に基づいて,個々のトレーニングサンプルの損失を軽減し,堅牢な一般化を目標とする,新たな逆トレーニングフレームワークを提案する。
重み付き対向訓練を,頑健な分類器の学習に対応する上位レベル問題と,サンプルの \textit{multi-class margin} から重要重みにマップされるパラメトリック関数の学習に対応する下位レベル問題との双レベル最適化問題として定式化する。
広範な実験により,我々のアプローチは,関連する手法や最先端のベースラインと比較して,クリーンでロバストな精度を一貫して向上できることが証明された。
関連論文リスト
- Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
本稿では,学習理論と集中不等式を利用して従来のソリューションの欠点を克服する新しい枠組みを提案する。
本手法は, クラスごとに異なる不均衡度に効果的に適応できるため, より堅牢で信頼性の高い分類結果が得られる。
論文 参考訳(メタデータ) (2024-07-16T16:02:27Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
対人訓練の2つのプレイヤーゼロサムパラダイムは、十分な強靭性を発揮できていない。
敵のトレーニングアルゴリズムでよく使われるサロゲートベースの緩和は、ロバスト性に関するすべての保証を無効にすることを示す。
対人訓練の新たな非ゼロサム二段階の定式化は、一致し、場合によっては最先端の攻撃よりも優れたフレームワークをもたらす。
論文 参考訳(メタデータ) (2023-06-19T16:00:48Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
ディープニューラルネットワークのロバスト性は、通常、敵の例、共通の腐敗、分散シフトに欠けている。
画像分類タスクにおいてtextbfARES-Bench と呼ばれる総合的なベンチマークロバスト性を確立する。
それに応じてトレーニング設定を設計することにより、新しい最先端の対人ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-02-28T04:26:20Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
本稿では,新たなニューラルネットワークトレーニングフレームワークを提案する。
本稿では,データ拡張と対向的摂動の両面に一貫性のある特徴表現を学習することで,敵攻撃に対するモデルロバスト性を改善することを提案する。
我々は,CIFAR-10データセットを用いて,教師付きおよび自己教師付き対向学習法よりも頑健な精度とクリーンな精度を両立させる手法を検証する。
論文 参考訳(メタデータ) (2022-03-16T21:41:27Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
本稿では,ガウス的特徴を伴う線形回帰の文脈における対人訓練の役割を,正確かつ包括的に理解する。
我々は,同時代のミニマックス対逆訓練手法によって達成された標準/ロバスト精度とそれに対応するトレードオフを正確に特徴づける。
逆行訓練アルゴリズムの理論は、様々な要因(トレーニングデータのサイズや品質、モデルの過度化など)がこれらの2つの競合するアキュラシー間のトレードオフにどのように影響するかを厳密に研究する上で役立ちます。
論文 参考訳(メタデータ) (2020-02-24T19:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。