論文の概要: Learning Confidence Bounds for Classification with Imbalanced Data
- arxiv url: http://arxiv.org/abs/2407.11878v2
- Date: Tue, 1 Oct 2024 13:35:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 20:59:00.516723
- Title: Learning Confidence Bounds for Classification with Imbalanced Data
- Title(参考訳): 不均衡データを用いた分類のための信頼度境界の学習
- Authors: Matt Clifford, Jonathan Erskine, Alexander Hepburn, Raúl Santos-Rodríguez, Dario Garcia-Garcia,
- Abstract要約: 本稿では,学習理論と集中不等式を利用して従来のソリューションの欠点を克服する新しい枠組みを提案する。
本手法は, クラスごとに異なる不均衡度に効果的に適応できるため, より堅牢で信頼性の高い分類結果が得られる。
- 参考スコア(独自算出の注目度): 42.690254618937196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class imbalance poses a significant challenge in classification tasks, where traditional approaches often lead to biased models and unreliable predictions. Undersampling and oversampling techniques have been commonly employed to address this issue, yet they suffer from inherent limitations stemming from their simplistic approach such as loss of information and additional biases respectively. In this paper, we propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions. We focus on understanding the uncertainty in a class-dependent manner, as captured by confidence bounds that we directly embed into the learning process. By incorporating class-dependent estimates, our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes. We empirically show how our framework provides a promising direction for handling imbalanced data in classification tasks, offering practitioners a valuable tool for building more accurate and trustworthy models.
- Abstract(参考訳): クラス不均衡は、伝統的なアプローチがしばしばバイアス付きモデルや信頼できない予測につながるような分類タスクにおいて重大な課題となる。
アンサンプリングとオーバーサンプリングの技術はこの問題に対処するために一般的に用いられてきたが、それらは情報喪失や追加バイアスといった単純なアプローチに起因する固有の制限に悩まされている。
本稿では,従来のソリューションの欠点を克服するために,学習理論と集中不等式を活用する新しい枠組みを提案する。
私たちは、学習プロセスに直接埋め込む信頼境界によって捉えられるように、クラスに依存した方法で不確実性を理解することに重点を置いています。
クラスに依存した推定を組み込むことで、クラス間の不均衡の度合いを効果的に調整し、より堅牢で信頼性の高い分類結果が得られる。
我々は、我々のフレームワークが、分類タスクにおける不均衡なデータを扱うための有望な方向をどのように提供しているかを実証的に示し、実践者がより正確で信頼できるモデルを構築するための貴重なツールを提供する。
関連論文リスト
- Towards the Mitigation of Confirmation Bias in Semi-supervised Learning: a Debiased Training Perspective [6.164100243945264]
半教師付き学習(SSL)は、モデルが特定のクラスを不均等に好むという、一般的に確認バイアスを示す。
SSLのデバイアスドトレーニングのための統合フレームワークであるTaMatchを紹介します。
TaMatchは,様々な課題の画像分類タスクにおいて,既存の最先端手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-09-26T21:50:30Z) - DAFA: Distance-Aware Fair Adversarial Training [34.94780532071229]
敵対的攻撃の下では、最悪のクラスからのサンプルに対するモデルの予測の大半は、最悪のクラスと同様のクラスに偏っている。
本稿では,クラス間の類似性を考慮し,頑健な公正性に対処するDAFA手法を提案する。
論文 参考訳(メタデータ) (2024-01-23T07:15:47Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
本稿では、キャリブレーション対応ベイズニューラルネットワーク(CA-BNN)と呼ばれる統合フレームワークを提案する。
ベイズ学習のように変分分布を最適化しながら、データ依存あるいはデータ非依存の正則化をそれぞれ適用する。
予測キャリブレーション誤差(ECE)と信頼性図を用いて,提案手法の利点を検証した。
論文 参考訳(メタデータ) (2023-05-12T14:19:15Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
デュエルケアなしでデータに基づいて訓練された機械学習モデルは、特定の人口に対して不公平で差別的な行動を示すことが多い。
本研究では,変動分布に公平なペナルティを含む離散潜伏変数に対して,公平な変分推論手法を開発した。
提案手法の一般化と実世界への影響の可能性を示すため,刑事司法リスク評価のための特別目的グラフィカルモデルを構築した。
論文 参考訳(メタデータ) (2022-09-15T04:54:21Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
つぶやきの感情と職業分類のロングテール学習手法を評価する。
フェアネスを強制する手法により、マージンロスに基づくアプローチを拡張します。
論文 参考訳(メタデータ) (2021-09-21T22:16:30Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。