Towards Human-centered Explainable AI: A Survey of User Studies for
Model Explanations
- URL: http://arxiv.org/abs/2210.11584v4
- Date: Tue, 19 Dec 2023 13:05:33 GMT
- Title: Towards Human-centered Explainable AI: A Survey of User Studies for
Model Explanations
- Authors: Yao Rong, Tobias Leemann, Thai-trang Nguyen, Lisa Fiedler, Peizhu
Qian, Vaibhav Unhelkar, Tina Seidel, Gjergji Kasneci, Enkelejda Kasneci
- Abstract summary: We identify and analyze 97core papers with human-based XAI evaluations over the past five years.
Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems.
We propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners.
- Score: 19.6851366307368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI
research. A better understanding of the needs of XAI users, as well as
human-centered evaluations of explainable models are both a necessity and a
challenge. In this paper, we explore how HCI and AI researchers conduct user
studies in XAI applications based on a systematic literature review. After
identifying and thoroughly analyzing 97core papers with human-based XAI
evaluations over the past five years, we categorize them along the measured
characteristics of explanatory methods, namely trust, understanding, usability,
and human-AI collaboration performance. Our research shows that XAI is
spreading more rapidly in certain application domains, such as recommender
systems than in others, but that user evaluations are still rather sparse and
incorporate hardly any insights from cognitive or social sciences. Based on a
comprehensive discussion of best practices, i.e., common models, design
choices, and measures in user studies, we propose practical guidelines on
designing and conducting user studies for XAI researchers and practitioners.
Lastly, this survey also highlights several open research directions,
particularly linking psychological science and human-centered XAI.
Related papers
- User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study [5.775094401949666]
This study is located in the Human-Centered Artificial Intelligence (HCAI)
It focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms.
arXiv Detail & Related papers (2024-10-21T12:32:39Z) - Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
Legal, business, and ethical requirements motivate using effective XAI.
We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task.
In other words, we address the helpfulness of XAI for human decision-making.
arXiv Detail & Related papers (2024-10-14T14:03:52Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
The emerging area of em Explainable Interfaces (EIs) focuses on the user interface and user experience design aspects of XAI.
This paper presents a systematic survey of 53 publications to identify current trends in human-XAI interaction and promising directions for EI design and development.
arXiv Detail & Related papers (2024-03-21T15:44:56Z) - OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
This paper presents OpenHEXAI, an open-source framework for human-centered evaluation of XAI methods.
OpenHEAXI is the first large-scale infrastructural effort to facilitate human-centered benchmarks of XAI methods.
arXiv Detail & Related papers (2024-02-20T22:17:59Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
The number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years.
It emerged that user-centred approaches to XAI positively affect the interaction between users and systems.
We propose an assessment task to objectively and quantitatively measure the goodness of XAI systems.
arXiv Detail & Related papers (2023-12-07T15:49:39Z) - Explainable AI applications in the Medical Domain: a systematic review [1.4419517737536707]
The field of Medical AI faces various challenges, in terms of building user trust, complying with regulations, using data ethically.
This paper presents a literature review on the recent developments of XAI solutions for medical decision support, based on a representative sample of 198 articles published in recent years.
arXiv Detail & Related papers (2023-08-10T08:12:17Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - Human-Centered Explainable AI (XAI): From Algorithms to User Experiences [29.10123472973571]
explainable AI (XAI) has produced a vast collection of algorithms in recent years.
The field is starting to embrace inter-disciplinary perspectives and human-centered approaches.
arXiv Detail & Related papers (2021-10-20T21:33:46Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.