User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study
- URL: http://arxiv.org/abs/2410.15952v1
- Date: Mon, 21 Oct 2024 12:32:39 GMT
- Title: User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study
- Authors: Szymon Bobek, Paloma Korycińska, Monika Krakowska, Maciej Mozolewski, Dorota Rak, Magdalena Zych, Magdalena Wójcik, Grzegorz J. Nalepa,
- Abstract summary: This study is located in the Human-Centered Artificial Intelligence (HCAI)
It focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms.
- Score: 5.775094401949666
- License:
- Abstract: This study is located in the Human-Centered Artificial Intelligence (HCAI) and focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms, specifically investigating how humans understand and interact with the explanations provided by these algorithms. To achieve this, we employed a multi-disciplinary approach that included state-of-the-art research methods from social sciences to measure the comprehensibility of explanations generated by a state-of-the-art lachine learning model, specifically the Gradient Boosting Classifier (XGBClassifier). We conducted an extensive empirical user study involving interviews with 39 participants from three different groups, each with varying expertise in data science, data visualization, and domain-specific knowledge related to the dataset used for training the machine learning model. Participants were asked a series of questions to assess their understanding of the model's explanations. To ensure replicability, we built the model using a publicly available dataset from the UC Irvine Machine Learning Repository, focusing on edible and non-edible mushrooms. Our findings reveal limitations in existing XAI methods and confirm the need for new design principles and evaluation techniques that address the specific information needs and user perspectives of different classes of AI stakeholders. We believe that the results of our research and the cross-disciplinary methodology we developed can be successfully adapted to various data types and user profiles, thus promoting dialogue and address opportunities in HCAI research. To support this, we are making the data resulting from our study publicly available.
Related papers
- XAI-FUNGI: Dataset resulting from the user study on comprehensibility of explainable AI algorithms [5.775094401949666]
This paper introduces a dataset that is the result of a user study on the comprehensibility of explainable artificial intelligence (XAI) algorithms.
The study participants were recruited from 149 candidates to form three groups representing experts in the domain of mycology (DE)
The main part of the dataset contains 39 transcripts of interviews during which participants were asked to complete a series of tasks and questions related to the interpretation of decisions of a machine learning model trained to distinguish between edible and inedible mushrooms.
arXiv Detail & Related papers (2024-10-21T11:37:58Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
This paper presents OpenHEXAI, an open-source framework for human-centered evaluation of XAI methods.
OpenHEAXI is the first large-scale infrastructural effort to facilitate human-centered benchmarks of XAI methods.
arXiv Detail & Related papers (2024-02-20T22:17:59Z) - Towards Explainable Artificial Intelligence (XAI): A Data Mining
Perspective [35.620874971064765]
This work takes a "data-centric" view, examining how data collection, processing, and analysis contribute to explainable AI (XAI)
We categorize existing work into three categories subject to their purposes: interpretations of deep models, influences of training data, and insights of domain knowledge.
Specifically, we distill XAI methodologies into data mining operations on training and testing data across modalities.
arXiv Detail & Related papers (2024-01-09T06:27:09Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal [0.0]
This study conducts a thorough review of extant research in Explainable Machine Learning (XML)
Our main objective is to offer a classification of XAI methods within the realm of XML.
We propose a mapping function that take to account users and their desired properties and suggest an XAI method to them.
arXiv Detail & Related papers (2023-02-07T01:06:38Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations [18.971689499890363]
We identify and analyze 97core papers with human-based XAI evaluations over the past five years.
Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems.
We propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners.
arXiv Detail & Related papers (2022-10-20T20:53:00Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.