Nonlinear flip-flop quantum walks through potential barriers
- URL: http://arxiv.org/abs/2210.11661v1
- Date: Fri, 21 Oct 2022 01:11:26 GMT
- Title: Nonlinear flip-flop quantum walks through potential barriers
- Authors: F. S. Passos and A. R. C. Buarque
- Abstract summary: nonlinear flip-flop quantum walk with amplitude-dependent phase shifts with pertubing potential barrier is investigated.
We show the existence of different Hadamard quantum walking regimes, including those with mobile soliton-like structures or self-trapped states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamics of nonlinear flip-flop quantum walk with amplitude-dependent
phase shifts with pertubing potential barrier is investigated. Through the
adjustment between uniform local perturbations and a Kerrlike nonlinearity of
the medium we find a rich set of dynamic profiles. We will show the existence
of different Hadamard quantum walking regimes, including those with mobile
soliton-like structures or self-trapped states. The latter is predominant for
perturbations with amplitudes that tend to $\varphi\rightarrow \pi/2$. In this
system, the qubit shows an unusual behavior as we increase the amplitudes of
the potential barriers, and displays a monotonic decrease in the self-trapping
$\varphi_c$ with respect to the nonlinear parameter. A chaotic-like regime
becomes predominant for intermediate nonlinearity values. Furthermore, we show
that by changing the quantum coins ($\theta$) a non-trivial dynamic arises,
where coins close to Pauli-X drives the system to a regime with predominant
soliton-like structures, while the chaotic behavior are restricted to a narrow
region in the $\chi$-$\varphi$ plane. We believe that is possible to implement
and observe the proprieties of this model in a integrated photonic system.
Related papers
- Non-linearity and chaos in the kicked top [0.0]
We study a quantum system that exhibits chaotic behavior in its classical limit.
Our investigation sheds light on the relationship between non-linearity and chaos in classical systems.
arXiv Detail & Related papers (2024-08-11T22:05:50Z) - Nonequilibrium Nonlinear Effects and Dynamical Boson Condensation in a Driven-Dissipative Wannier-Stark Lattice [0.0]
Driven-dissipative light-matter systems can exhibit collective nonequilibrium phenomena due to loss and gain processes.
We numerically predict a diverse range of stationary and non-stationary states resulting from the interplay of the tilt, tunneling, on-site interactions and loss and gain processes.
arXiv Detail & Related papers (2024-04-29T12:28:52Z) - Stability via symmetry breaking in interacting driven systems [0.0]
Photonic and bosonic systems subject to incoherent, wide-bandwidth driving cannot typically reach stable finite-density phases using only non-dissipative Hamiltonian nonlinearities.
We describe here a very general mechanism for circumventing this common limit, whereby Hamiltonian interactions can cut-off heating from a Markovian pump.
arXiv Detail & Related papers (2023-07-31T15:07:07Z) - Floquet-engineered nonlinearities and controllable pair-hopping
processes: From optical Kerr cavities to correlated quantum matter [0.0]
This work explores the possibility of creating and controlling unconventional nonlinearities by periodic driving.
By means of a parent quantum many-body description, we demonstrate that such driven systems are well captured by an effective NLSE.
We analyze these intriguing properties both in the weakly-interacting (mean-field) regime, captured by the effective NLSE, and in the strongly-correlated quantum regime.
arXiv Detail & Related papers (2023-04-12T13:56:27Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Nonlinear three-state quantum walks [0.0]
nonlinearity leads to a metastable self-trapped wavepacket component that radiates in the long-time regime.
A sudden dynamical transition from such metastable state to the point when the radiation process is triggered is found for a set of parameters.
arXiv Detail & Related papers (2022-07-08T15:18:47Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.