Structural Kernel Search via Bayesian Optimization and Symbolical
Optimal Transport
- URL: http://arxiv.org/abs/2210.11836v1
- Date: Fri, 21 Oct 2022 09:30:21 GMT
- Title: Structural Kernel Search via Bayesian Optimization and Symbolical
Optimal Transport
- Authors: Matthias Bitzer, Mona Meister, Christoph Zimmer
- Abstract summary: For Gaussian processes, selecting the kernel is a crucial task, often done manually by the expert.
We propose a novel, efficient search method through a general, structured kernel space.
- Score: 5.1672267755831705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in automated machine learning, model selection is
still a complex and computationally intensive process. For Gaussian processes
(GPs), selecting the kernel is a crucial task, often done manually by the
expert. Additionally, evaluating the model selection criteria for Gaussian
processes typically scales cubically in the sample size, rendering kernel
search particularly computationally expensive. We propose a novel, efficient
search method through a general, structured kernel space. Previous methods
solved this task via Bayesian optimization and relied on measuring the distance
between GP's directly in function space to construct a kernel-kernel. We
present an alternative approach by defining a kernel-kernel over the symbolic
representation of the statistical hypothesis that is associated with a kernel.
We empirically show that this leads to a computationally more efficient way of
searching through a discrete kernel space.
Related papers
- Optimal Kernel Choice for Score Function-based Causal Discovery [92.65034439889872]
We propose a kernel selection method within the generalized score function that automatically selects the optimal kernel that best fits the data.
We conduct experiments on both synthetic data and real-world benchmarks, and the results demonstrate that our proposed method outperforms kernel selection methods.
arXiv Detail & Related papers (2024-07-14T09:32:20Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Taming Nonconvexity in Kernel Feature Selection---Favorable Properties
of the Laplace Kernel [77.73399781313893]
A challenge is to establish the objective function of kernel-based feature selection.
The gradient-based algorithms available for non-global optimization are only able to guarantee convergence to local minima.
arXiv Detail & Related papers (2021-06-17T11:05:48Z) - Kernel Identification Through Transformers [54.3795894579111]
Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models.
This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models.
We introduce a novel approach named KITT: Kernel Identification Through Transformers.
arXiv Detail & Related papers (2021-06-15T14:32:38Z) - Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior [26.52863547394537]
We present a novel probabilistic algorithm to learn a kernel composition by handling the sparsity in the kernel selection with Horseshoe prior.
Our model can capture characteristics of time series with significant reductions in computational time and have competitive regression performance on real-world data sets.
arXiv Detail & Related papers (2020-12-21T13:41:15Z) - Sparse Gaussian Processes via Parametric Families of Compactly-supported
Kernels [0.6091702876917279]
We propose a method for deriving parametric families of kernel functions with compact support.
The parameters of this family of kernels can be learned from data using maximum likelihood estimation.
We show that these approximations incur minimal error over the exact models when modeling data drawn directly from a target GP.
arXiv Detail & Related papers (2020-06-05T20:44:09Z) - Scaling up Kernel Ridge Regression via Locality Sensitive Hashing [6.704115928005158]
We introduce a weighted version of random binning features and show that the corresponding kernel function generates smooth Gaussian processes.
We show that our weighted random binning features provide a spectral approximation to the corresponding kernel matrix, leading to efficient algorithms for kernel ridge regression.
arXiv Detail & Related papers (2020-03-21T21:41:16Z) - Learning Deep Kernels for Non-Parametric Two-Sample Tests [50.92621794426821]
We propose a class of kernel-based two-sample tests, which aim to determine whether two sets of samples are drawn from the same distribution.
Our tests are constructed from kernels parameterized by deep neural nets, trained to maximize test power.
arXiv Detail & Related papers (2020-02-21T03:54:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.