Embedded Silicon-Organic Integrated Neuromorphic System
- URL: http://arxiv.org/abs/2210.12064v2
- Date: Tue, 25 Jun 2024 19:35:21 GMT
- Title: Embedded Silicon-Organic Integrated Neuromorphic System
- Authors: Shengjie Zheng, Ling Liu, Junjie Yang, Jianwei Zhang, Tao Su, Bin Yue, Xiaojian Li,
- Abstract summary: We propose the concept of using AI to simulate the operating principles and materials of the brain in hardware to develop brain-inspired intelligence technology.
We build organic artificial synapses with simulated neurons from silicon-based Field-Programmable Gate Array.
We then construct biological neural network models based on the interpreted neural circuits.
- Score: 21.613965382220492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of artificial intelligence (AI) and robotics are both based on the tenet of "science and technology are people-oriented", and both need to achieve efficient communication with the human brain. Based on multi-disciplinary research in systems neuroscience, computer architecture, and functional organic materials, we proposed the concept of using AI to simulate the operating principles and materials of the brain in hardware to develop brain-inspired intelligence technology, and realized the preparation of neuromorphic computing devices and basic materials. We simulated neurons and neural networks in terms of material and morphology, using a variety of organic polymers as the base materials for neuroelectronic devices, for building neural interfaces as well as organic neural devices and silicon neural computational modules. We assemble organic artificial synapses with simulated neurons from silicon-based Field-Programmable Gate Array (FPGA) into organic artificial neurons, the basic components of neural networks, and later construct biological neural network models based on the interpreted neural circuits. Finally, we also discuss how to further build neuromorphic devices based on these organic artificial neurons, which have both a neural interface friendly to nervous tissue and interact with information from real biological neural networks.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits [2.649646793770068]
The human brain has immense learning capabilities at extreme energy efficiencies and scale that no artificial system has been able to match.
This paper argues the possibility of reverse-engineering the brain through architecting a prototype of a brain-derived neuromorphic computing system.
arXiv Detail & Related papers (2024-03-28T05:24:04Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors.
In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron.
arXiv Detail & Related papers (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
A kind of spiking neural network with biological interpretability is gradually receiving wide attention.
This review hopes to attract different researchers and advance the development of brain-inspired intelligence and artificial intelligence.
arXiv Detail & Related papers (2022-04-09T09:34:34Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
This study explores the concept of ANNs as a simulator of the biological neuron.
It also explores why brain-like intelligence is needed and how it differs from computational framework.
arXiv Detail & Related papers (2020-12-25T05:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.