論文の概要: Graph Coloring via Neural Networks for Haplotype Assembly and Viral
Quasispecies Reconstruction
- arxiv url: http://arxiv.org/abs/2210.12158v1
- Date: Fri, 21 Oct 2022 12:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 21:28:57.446543
- Title: Graph Coloring via Neural Networks for Haplotype Assembly and Viral
Quasispecies Reconstruction
- Title(参考訳): Haplotype Assembly と Viral Quasispecies 再構成のためのニューラルネットワークによるグラフカラー化
- Authors: Hansheng Xue, Vaibhav Rajan, Yu Lin
- Abstract要約: 我々はグラフ表現学習と最適化を組み合わせたNeurHapと呼ばれる新しい手法を開発した。
我々の実験は、競合するアプローチと比較して、実データや合成データセットにおけるNeurHapの性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 8.828330486848753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding genetic variation, e.g., through mutations, in organisms is
crucial to unravel their effects on the environment and human health. A
fundamental characterization can be obtained by solving the haplotype assembly
problem, which yields the variation across multiple copies of chromosomes.
Variations among fast evolving viruses that lead to different strains (called
quasispecies) are also deciphered with similar approaches. In both these cases,
high-throughput sequencing technologies that provide oversampled mixtures of
large noisy fragments (reads) of genomes, are used to infer constituent
components (haplotypes or quasispecies). The problem is harder for polyploid
species where there are more than two copies of chromosomes. State-of-the-art
neural approaches to solve this NP-hard problem do not adequately model
relations among the reads that are important for deconvolving the input signal.
We address this problem by developing a new method, called NeurHap, that
combines graph representation learning with combinatorial optimization. Our
experiments demonstrate substantially better performance of NeurHap in real and
synthetic datasets compared to competing approaches.
- Abstract(参考訳): 生物における遺伝的変異を理解することは、環境や人間の健康への影響を解明するために重要である。
ハプロタイプアセンブリー問題(haplotype assembly problem)は、染色体の複数のコピーにまたがる変異をもたらす。
異なる株(準種と呼ばれる)につながる高速に進化するウイルスの変異もまた、同様のアプローチで解読される。
どちらの場合も、ゲノムの大きなノイズフラグメント(読み取り)のオーバーサンプリング混合物を提供する高スループットシークエンシング技術は、構成成分(ハプロタイプまたは準種)を推論するために用いられる。
この問題は、染色体のコピーが2つ以上ある多倍体種にとって難しい。
このNPハード問題を解決する最先端のニューラルアプローチは、入力信号の逆転に重要なリード間の関係を適切にモデル化しない。
我々はグラフ表現学習と組合せ最適化を組み合わせたNeurHapと呼ばれる新しい手法を開発することでこの問題に対処する。
実データおよび合成データセットにおけるNeurHapの性能は,競合するアプローチと比較して有意に向上した。
関連論文リスト
- CSGDN: Contrastive Signed Graph Diffusion Network for Predicting Crop Gene-phenotype Associations [6.5678927417916455]
我々は、より少ないトレーニングサンプルでロバストなノード表現を学習し、より高いリンク予測精度を実現するために、コントラスト符号付きグラフ拡散ネットワーク(CSGDN)を提案する。
Gossypium hirsutum, Brassica napus, Triticum turgidumの3つの作物データセット上でCSGDNの有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2024-10-10T01:01:10Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
我々は、新しいコードブック事前学習タスク、すなわちマスク付きマイクロ環境モデリングを開発する。
突然変異効果予測において、最先端の事前学習法よりも優れた性能と訓練効率を示す。
論文 参考訳(メタデータ) (2024-05-16T03:53:21Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
異なるクラス間のホモフィリー分布の差は、ホモフィリックグラフやヘテロフィリックグラフよりも著しく大きい。
我々は、この現象を定量的に記述した、クラスホモフィリーバリアンスと呼ばれる新しい計量を導入する。
その影響を軽減するために,ホモフィリーエッジ生成グラフニューラルネットワーク(HedGe)と呼ばれる新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T14:26:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - SemanticCAP: Chromatin Accessibility Prediction Enhanced by Features
Learning from a Language Model [3.0643865202019698]
本稿では、ゲノムのアクセス可能な領域を特定するためのSemanticCAPという新しいソリューションを提案する。
遺伝子配列のコンテキストをモデル化する遺伝子モデルを導入し、遺伝子配列の効果的な表現を提供する。
公開ベンチマークによる他のシステムと比較すると,我々のモデルは性能が向上することが判明した。
論文 参考訳(メタデータ) (2022-04-05T11:47:58Z) - VEGN: Variant Effect Prediction with Graph Neural Networks [19.59965282985234]
本稿では,遺伝子と変異を持つ異種グラフ上で動作するグラフニューラルネットワーク(GNN)を用いて,変異効果予測をモデル化したVEGNを提案する。
このグラフは、変異体を遺伝子に割り当て、遺伝子-遺伝子相互作用ネットワークに遺伝子を接続することによって作成される。
VeGNは既存の最先端モデルの性能を改善する。
論文 参考訳(メタデータ) (2021-06-25T13:51:46Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
遺伝子型代入問題に対する機械学習手法であるMycorrhizaを紹介する。
提案アルゴリズムは系統ネットワークを用いて,標本間の進化的関係を符号化する特徴を設計する。
Mycorrhizaは、大きな平均固定指数(FST)を持つデータセットやハーディ・ワインバーグ平衡からの偏差で特に顕著な利得を得る。
論文 参考訳(メタデータ) (2020-10-14T02:36:27Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
本稿では,CLEIT(Cross-Level Information Transmission Network)フレームワークを提案する。
ドメイン適応にインスパイアされたCLEITは、まずハイレベルドメインの潜在表現を学び、その後、接地木埋め込みとして利用する。
体細胞突然変異による抗がん剤感受性の予測におけるCLEITの有効性と性能の向上を示す。
論文 参考訳(メタデータ) (2020-10-09T22:01:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Data Augmentation for Histopathological Images Based on
Gaussian-Laplacian Pyramid Blending [59.91656519028334]
データ不均衡は、機械学習(ML)アルゴリズムに影響を及ぼす主要な問題である。
本稿では、HIデータセットを増大させるだけでなく、患者間の変動を分散させる新しいアプローチを提案する。
BreakHisデータセットの実験結果から、文献で示されたDA手法の大多数は、有望な利得を示している。
論文 参考訳(メタデータ) (2020-01-31T22:02:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。