論文の概要: G2PDiffusion: Cross-Species Genotype-to-Phenotype Prediction via Evolutionary Diffusion
- arxiv url: http://arxiv.org/abs/2502.04684v3
- Date: Mon, 10 Mar 2025 03:08:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:43:21.522413
- Title: G2PDiffusion: Cross-Species Genotype-to-Phenotype Prediction via Evolutionary Diffusion
- Title(参考訳): G2PDiffusion:進化拡散による異種間遺伝子型間予測
- Authors: Mengdi Liu, Zhangyang Gao, Hong Chang, Stan Z. Li, Shiguang Shan, Xilin Chen,
- Abstract要約: 本稿では,DNAから形態像を生成する最初の遺伝子型対フェノタイプ拡散モデル(G2PDiffusion)を提案する。
本モデルは,1)保存および共進化パターンを識別するMSA検索エンジン,2)複雑なジェノタイプ-環境相互作用を効果的にモデル化する環境対応MSA条件エンコーダ,3)遺伝子型-フェノタイプ整合性を改善する適応型表現的アライメントモジュールを含む。
- 参考スコア(独自算出の注目度): 108.94237816552024
- License:
- Abstract: Understanding how genes influence phenotype across species is a fundamental challenge in genetic engineering, which will facilitate advances in various fields such as crop breeding, conservation biology, and personalized medicine. However, current phenotype prediction models are limited to individual species and expensive phenotype labeling process, making the genotype-to-phenotype prediction a highly domain-dependent and data-scarce problem. To this end, we suggest taking images as morphological proxies, facilitating cross-species generalization through large-scale multimodal pretraining. We propose the first genotype-to-phenotype diffusion model (G2PDiffusion) that generates morphological images from DNA considering two critical evolutionary signals, i.e., multiple sequence alignments (MSA) and environmental contexts. The model contains three novel components: 1) a MSA retrieval engine that identifies conserved and co-evolutionary patterns; 2) an environment-aware MSA conditional encoder that effectively models complex genotype-environment interactions; and 3) an adaptive phenomic alignment module to improve genotype-phenotype consistency. Extensive experiments show that integrating evolutionary signals with environmental context enriches the model's understanding of phenotype variability across species, thereby offering a valuable and promising exploration into advanced AI-assisted genomic analysis.
- Abstract(参考訳): 遺伝子が種間で表現型にどのように影響するかを理解することは、遺伝子工学の基本的な課題であり、作物の育種、保護生物学、パーソナライズド医療など様々な分野の進歩を促進する。
しかし、現在の表現型予測モデルは個々の種と高価な表現型ラベリングプロセスに限られており、遺伝子型からフェノタイプへの予測はドメインに依存し、データスカースな問題となっている。
この目的のために, 画像を形態的プロキシとして捉え, 大規模マルチモーダル事前学習による種間一般化を容易にすることを提案する。
本稿では,DNAから形態画像を生成する最初の遺伝子型対フェノタイプ拡散モデル(G2PDiffusion)を提案する。
モデルには3つの新しいコンポーネントが含まれている。
1)保存及び共進化パターンを識別するMSA検索エンジン
2)複雑なジェノタイプ-環境相互作用を効果的にモデル化する環境対応MSA条件エンコーダ
3) 遺伝子型-フェノタイプ整合性を改善する適応型表現型アライメントモジュール。
広範囲にわたる実験により、進化的信号と環境条件を統合することで、種間での表現型の多様性に対するモデルの理解が深まり、高度なAI支援ゲノム解析への有意義で有望な探索が可能になることが示されている。
関連論文リスト
- Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models [0.815557531820863]
本稿では,事前学習した潜伏拡散モデルを用いて,微妙な表現型変化を明らかにする手法を提案する。
本研究は, 視覚的特徴と知覚的差異の両方を捉えることで, 表現型変化を効果的に検出できることを示す。
論文 参考訳(メタデータ) (2025-02-12T15:45:19Z) - CSGDN: Contrastive Signed Graph Diffusion Network for Predicting Crop Gene-phenotype Associations [6.5678927417916455]
我々は、より少ないトレーニングサンプルでロバストなノード表現を学習し、より高いリンク予測精度を実現するために、コントラスト符号付きグラフ拡散ネットワーク(CSGDN)を提案する。
Gossypium hirsutum, Brassica napus, Triticum turgidumの3つの作物データセット上でCSGDNの有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2024-10-10T01:01:10Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - On The Nature Of The Phenotype In Tree Genetic Programming [3.8642945120580703]
ツリーベースGP(TGP)における遺伝子型と表現型の基本概念について論じる。
次に、5つのベンチマークデータセットを使ってその振る舞いを分析する。
表現型を生成するために,GP木から意味的に非効率なコードを取り除くユニークな手法を提案する。
論文 参考訳(メタデータ) (2024-02-12T19:19:29Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
拡散モデルは、合成データ生成と画像編集アプリケーションでますます人気がある。
本研究では, 性別, 人種, 年齢などの属性に関して, 拡散型顔生成モデルにおけるバイアスの存在について検討する。
本研究は,GAN(Generative Adversarial Network)とGAN(Generative Adversarial Network)をベースとした顔生成モデルにおいて,データセットサイズが属性組成および知覚品質に与える影響について検討する。
論文 参考訳(メタデータ) (2023-05-10T18:22:31Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Phenotype Search Trajectory Networks for Linear Genetic Programming [8.079719491562305]
中立性(英: Neutrality)は、いくつかの突然変異が表現型変化を起こさないという観察である。
遺伝的プログラミングシステムの探索軌跡をグラフベースモデルとして検討する。
遺伝子型とコルモゴロフ複雑性を含む表現型の特徴を測定した。
論文 参考訳(メタデータ) (2022-11-15T21:20:50Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
本稿では,CLEIT(Cross-Level Information Transmission Network)フレームワークを提案する。
ドメイン適応にインスパイアされたCLEITは、まずハイレベルドメインの潜在表現を学び、その後、接地木埋め込みとして利用する。
体細胞突然変異による抗がん剤感受性の予測におけるCLEITの有効性と性能の向上を示す。
論文 参考訳(メタデータ) (2020-10-09T22:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。