Augmentation by Counterfactual Explanation -- Fixing an Overconfident
Classifier
- URL: http://arxiv.org/abs/2210.12196v1
- Date: Fri, 21 Oct 2022 18:53:16 GMT
- Title: Augmentation by Counterfactual Explanation -- Fixing an Overconfident
Classifier
- Authors: Sumedha Singla and Nihal Murali and Forough Arabshahi and Sofia
Triantafyllou and Kayhan Batmanghelich
- Abstract summary: A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving.
This paper proposes an application of counterfactual explanations in fixing an over-confident classifier.
- Score: 11.233334009240947
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A highly accurate but overconfident model is ill-suited for deployment in
critical applications such as healthcare and autonomous driving. The
classification outcome should reflect a high uncertainty on ambiguous
in-distribution samples that lie close to the decision boundary. The model
should also refrain from making overconfident decisions on samples that lie far
outside its training distribution, far-out-of-distribution (far-OOD), or on
unseen samples from novel classes that lie near its training distribution
(near-OOD). This paper proposes an application of counterfactual explanations
in fixing an over-confident classifier. Specifically, we propose to fine-tune a
given pre-trained classifier using augmentations from a counterfactual
explainer (ACE) to fix its uncertainty characteristics while retaining its
predictive performance. We perform extensive experiments with detecting
far-OOD, near-OOD, and ambiguous samples. Our empirical results show that the
revised model have improved uncertainty measures, and its performance is
competitive to the state-of-the-art methods.
Related papers
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - Large Class Separation is not what you need for Relational
Reasoning-based OOD Detection [12.578844450586]
Out-Of-Distribution (OOD) detection methods provide a solution by identifying semantic novelty.
Most of these methods leverage a learning stage on the known data, which means training (or fine-tuning) a model to capture the concept of normality.
A viable alternative is that of evaluating similarities in the embedding space produced by large pre-trained models without any further learning effort.
arXiv Detail & Related papers (2023-07-12T14:10:15Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Uncertainty-Aware Reliable Text Classification [21.517852608625127]
Deep neural networks have significantly contributed to the success in predictive accuracy for classification tasks.
They tend to make over-confident predictions in real-world settings, where domain shifting and out-of-distribution examples exist.
We propose an inexpensive framework that adopts both auxiliary outliers and pseudo off-manifold samples to train the model with prior knowledge of a certain class.
arXiv Detail & Related papers (2021-07-15T04:39:55Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Adversarial Robustness on In- and Out-Distribution Improves
Explainability [109.68938066821246]
RATIO is a training procedure for robustness via Adversarial Training on In- and Out-distribution.
RATIO achieves state-of-the-art $l$-adrial on CIFAR10 and maintains better clean accuracy.
arXiv Detail & Related papers (2020-03-20T18:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.