Large Class Separation is not what you need for Relational
Reasoning-based OOD Detection
- URL: http://arxiv.org/abs/2307.06179v1
- Date: Wed, 12 Jul 2023 14:10:15 GMT
- Title: Large Class Separation is not what you need for Relational
Reasoning-based OOD Detection
- Authors: Lorenzo Li Lu, Giulia D'Ascenzi, Francesco Cappio Borlino, Tatiana
Tommasi
- Abstract summary: Out-Of-Distribution (OOD) detection methods provide a solution by identifying semantic novelty.
Most of these methods leverage a learning stage on the known data, which means training (or fine-tuning) a model to capture the concept of normality.
A viable alternative is that of evaluating similarities in the embedding space produced by large pre-trained models without any further learning effort.
- Score: 12.578844450586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard recognition approaches are unable to deal with novel categories at
test time. Their overconfidence on the known classes makes the predictions
unreliable for safety-critical applications such as healthcare or autonomous
driving. Out-Of-Distribution (OOD) detection methods provide a solution by
identifying semantic novelty. Most of these methods leverage a learning stage
on the known data, which means training (or fine-tuning) a model to capture the
concept of normality. This process is clearly sensitive to the amount of
available samples and might be computationally expensive for on-board systems.
A viable alternative is that of evaluating similarities in the embedding space
produced by large pre-trained models without any further learning effort. We
focus exactly on such a fine-tuning-free OOD detection setting. This works
presents an in-depth analysis of the recently introduced relational reasoning
pre-training and investigates the properties of the learned embedding,
highlighting the existence of a correlation between the inter-class feature
distance and the OOD detection accuracy. As the class separation depends on the
chosen pre-training objective, we propose an alternative loss function to
control the inter-class margin, and we show its advantage with thorough
experiments.
Related papers
- Recent Advances in OOD Detection: Problems and Approaches [40.27656150526273]
Out-of-distribution (OOD) detection aims to detect test samples outside the training category space.
We provide a discussion of the evaluation scenarios, a variety of applications, and several future research directions.
arXiv Detail & Related papers (2024-09-18T11:30:30Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection [9.656342063882555]
We study five types of distribution shifts and evaluate the performance of recent OOD detection methods on each of them.
Our findings reveal that while these methods excel in detecting unknown classes, their performance is inconsistent when encountering other types of distribution shifts.
We present an ensemble approach that offers a more consistent and comprehensive solution for broad OOD detection.
arXiv Detail & Related papers (2023-08-22T14:52:44Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Plugin estimators for selective classification with out-of-distribution
detection [67.28226919253214]
Real-world classifiers can benefit from abstaining from predicting on samples where they have low confidence.
These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature.
Recent work on selective classification with OOD detection has argued for the unified study of these problems.
We propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches.
arXiv Detail & Related papers (2023-01-29T07:45:17Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
Outlier detection tasks have been playing a critical role in AI safety.
Deep neural network classifiers usually tend to incorrectly classify out-of-distribution (OOD) inputs into in-distribution classes with high confidence.
We propose an alternative probabilistic paradigm that is both practically useful and theoretically viable for the OOD detection tasks.
arXiv Detail & Related papers (2022-09-26T15:59:55Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
Refraining from confidently predicting when faced with categories of inputs different from those seen during training is an important requirement for the safe deployment of deep learning systems.
We present a simple, but highly effective approach to deal with out-of-distribution detection that uses the principle of abstention.
arXiv Detail & Related papers (2021-05-15T00:46:11Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Uncertainty-Based Out-of-Distribution Classification in Deep
Reinforcement Learning [17.10036674236381]
Wrong predictions for out-of-distribution data can cause safety critical situations in machine learning systems.
We propose a framework for uncertainty-based OOD classification: UBOOD.
We show that UBOOD produces reliable classification results when combined with ensemble-based estimators.
arXiv Detail & Related papers (2019-12-31T09:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.