論文の概要: Implicit Offline Reinforcement Learning via Supervised Learning
- arxiv url: http://arxiv.org/abs/2210.12272v1
- Date: Fri, 21 Oct 2022 21:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 15:24:35.912822
- Title: Implicit Offline Reinforcement Learning via Supervised Learning
- Title(参考訳): 教師付き学習によるインプシットオフライン強化学習
- Authors: Alexandre Piche, Rafael Pardinas, David Vazquez, Igor Mordatch, Chris
Pal
- Abstract要約: 監視学習によるオフライン強化学習(RL)は、さまざまな専門レベルのポリシーによって収集されたデータセットからロボットスキルを学ぶための、シンプルで効果的な方法である。
我々は、暗黙的なモデルが返却情報を利用して、固定されたデータセットからロボットスキルを取得するために、明示的なアルゴリズムにマッチするか、あるいは性能を向上するかを示す。
- 参考スコア(独自算出の注目度): 83.8241505499762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline Reinforcement Learning (RL) via Supervised Learning is a simple and
effective way to learn robotic skills from a dataset collected by policies of
different expertise levels. It is as simple as supervised learning and Behavior
Cloning (BC), but takes advantage of return information. On datasets collected
by policies of similar expertise, implicit BC has been shown to match or
outperform explicit BC. Despite the benefits of using implicit models to learn
robotic skills via BC, offline RL via Supervised Learning algorithms have been
limited to explicit models. We show how implicit models can leverage return
information and match or outperform explicit algorithms to acquire robotic
skills from fixed datasets. Furthermore, we show the close relationship between
our implicit methods and other popular RL via Supervised Learning algorithms to
provide a unified framework. Finally, we demonstrate the effectiveness of our
method on high-dimension manipulation and locomotion tasks.
- Abstract(参考訳): オフライン強化学習(RL)は、さまざまな専門レベルのポリシーによって収集されたデータセットからロボットスキルを学ぶための、シンプルで効果的な方法である。
教師付き学習および行動クローニング(bc)と同じくらい単純であるが、戻り情報を利用する。
同様の専門知識を持つポリシーによって収集されたデータセットでは、暗黙のbcは明示的なbcと一致するか、または上回ることが示されている。
BCを介してロボットスキルを学ぶために暗黙のモデルを使用することの利点にもかかわらず、Supervised LearningアルゴリズムによるオフラインRLは明示的なモデルに限定されている。
我々は,暗黙のモデルが回帰情報を活用し,明示的なアルゴリズムにマッチあるいは超越して,固定データセットからロボットのスキルを身につける方法を示す。
さらに,教師付き学習アルゴリズムを用いて,暗黙的手法と他の人気rlとの密接な関係を示し,統一フレームワークを提供する。
最後に,本手法が高次元操作および移動作業に与える影響を実証する。
関連論文リスト
- Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
学習を記述するフロー方程式を導出するために,データセット処理アプローチを用いる。
学習ルール(教師付きまたは強化学習,SL/RL)と入力データ分布が知覚者の学習曲線に及ぼす影響を特徴付ける。
このアプローチは、より複雑な回路アーキテクチャの学習力学を解析する方法を示している。
論文 参考訳(メタデータ) (2024-09-05T17:58:28Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
バッチ(オフライン)強化学習の最近の進歩は、利用可能なオフラインデータから学習する上で有望な結果を示している。
本研究では,不確実性推定を用いて人間の実演データを注入する手法を提案する。
実験の結果,本手法は,専門家データと準最適エージェントから収集したデータを組み合わせる方法に比べて,よりサンプル効率が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-16T01:41:59Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - RvS: What is Essential for Offline RL via Supervised Learning? [77.91045677562802]
近年の研究では、時間差(TD)のない教師あり学習だけでオフラインRLに極めて効果的であることが示されている。
あらゆる環境スイートにおいて、2層フィードフォワードによる可能性の最大化は競争力がある。
彼らはまた、ランダムデータに対して比較的弱い既存のRvS法の限界を探索する。
論文 参考訳(メタデータ) (2021-12-20T18:55:16Z) - A Workflow for Offline Model-Free Robotic Reinforcement Learning [117.07743713715291]
オフライン強化学習(RL)は、オンラインインタラクションを伴わずに、事前の経験のみを活用することによって、学習制御ポリシを可能にする。
本研究では,教師付き学習問題に対して,比較的よく理解されたオフラインRLと類似した実践的ワークフローを開発する。
オンラインチューニングを伴わない効果的なポリシー作成におけるこのワークフローの有効性を実証する。
論文 参考訳(メタデータ) (2021-09-22T16:03:29Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
相対エントロピーQラーニング(Relative Entropy Q-Learning、REQ)は、オフラインおよび従来のRLアルゴリズムのアイデアを組み合わせた単純なポリシーアルゴリズムである。
本稿では、REQが、デモから一般の政治外RL、オフラインRL、およびRLにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2020-10-16T18:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。