論文の概要: Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from
Brain MRIs
- arxiv url: http://arxiv.org/abs/2210.12331v3
- Date: Sat, 17 Jun 2023 23:24:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 05:18:07.600415
- Title: Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from
Brain MRIs
- Title(参考訳): 脳MRIからの早期アルツハイマー検出のための深部マルチブランチCNNアーキテクチャ
- Authors: Paul K. Mandal, Rakesh Mahto
- Abstract要約: アルツハイマー病(英語: Alzheimer's disease、AD)は、認知症を引き起こす神経変性疾患である。
7,866,819個のパラメータからなる深層畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
このモデルは、患者が99.05%の3段階の精度で、非段調、軽度段調、中等度段調であるかどうかを予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Alzheimer's disease (AD) is a neuro-degenerative disease that can cause
dementia and result severe reduction in brain function inhibiting simple tasks
especially if no preventative care is taken. Over 1 in 9 Americans suffer from
AD induced dementia and unpaid care for people with AD related dementia is
valued at $271.6 billion. Hence, various approaches have been developed for
early AD diagnosis to prevent its further progression. In this paper, we first
review other approaches that could be used for early detection of AD. We then
give an overview of our dataset that was from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) and propose a deep Convolutional Neural Network
(CNN) architecture consisting of 7,866,819 parameters. This model has three
different convolutional branches with each having a different length. Each
branch is comprised of different kernel sizes. This model can predict whether a
patient is non-demented, mild-demented, or moderately demented with a 99.05%
three class accuracy.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's disease、AD)は、認知症を引き起こす神経変性疾患であり、特に予防的治療を受けなければ、単純なタスクを阻害する脳機能低下を引き起こす。
アメリカ人の9人に1人以上が広告誘発認知症を患っており、広告関連認知症患者に対する無給ケアは2716億ドルと評価されている。
したがって, 早期AD診断の進歩を防ぐために, 様々なアプローチが開発されている。
本稿では,まず,広告の早期検出に使用可能な他の手法について検討する。
次にアルツハイマー病の神経画像化イニシアチブ(adni)から得られたデータセットの概要を説明し、7,866,819パラメータからなる深層畳み込みニューラルネットワーク(cnn)アーキテクチャを提案する。
このモデルは3つの異なる分岐を持ち、それぞれの長さが異なる。
各ブランチは異なるカーネルサイズで構成されている。
このモデルは、非服用、軽度服用、中等度服用を99.05%の正確さで予測できる。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - AD-Lite Net: A Lightweight and Concatenated CNN Model for Alzheimer's Detection from MRI Images [1.8749305679160366]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、ヒトの脳に影響を及ぼす非硬化性進行性神経変性疾患であり、記憶力、認知能力の低下、そして最終的には日常的な作業を行う能力の低下につながる。
早期のアルツハイマー病を高い精度で検出できるCADシステムが必要である。
我々は、上記の問題を緩和できる新しいAD-Lite Netモデル(スクラッチから訓練)を提案している。
論文 参考訳(メタデータ) (2024-09-12T16:00:51Z) - SNeurodCNN: Structure-focused Neurodegeneration Convolutional Neural Network for Modelling and Classification of Alzheimer's Disease [0.0]
認知症の主要な形態であるアルツハイマー病(AD)は、世界的な課題となっている。
現在の臨床診断は、放射線技師の専門家による解釈に依存しており、これは人間の誤りを招きやすい。
本稿では,SNeurodCNNという新しい構造に着目した神経変性CNNアーキテクチャを含むディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-08T14:33:57Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNetはアルツハイマー病(AD)を診断するためのマルチグリッドと畳み込みニューラルネットワークの統合フレームワークである
このモデルはADとNCの分類で92.133%の精度を達成し、モデルのパラメータを大幅に削減した。
論文 参考訳(メタデータ) (2022-01-12T09:08:08Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
T1強調MRIデータから脳年齢を推定するために,新しい3次元畳み込みネットワークである2段エイジネットワーク(TSAN)を提案する。
686ドルのMRIによる実験では、TSANが正確な脳年齢を推定できることが示された。
論文 参考訳(メタデータ) (2021-06-06T07:11:25Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
本稿では,音響的,認知的,言語的特徴を活用してマルチモーダルアンサンブルシステムを構築する新しいアーキテクチャを提案する。
時相特性を持つ特殊な人工ニューラルネットワークを使用して、アルツハイマー認知症(AD)とその重症度を検出する。
本システムでは,AD分類では最先端試験精度,精度,リコール,F1スコアが83.3%,MMSEスコア評価では4.60の最先端試験根平均二乗誤差(RMSE)が得られた。
論文 参考訳(メタデータ) (2020-08-30T21:47:26Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。