論文の概要: Robots-Dont-Cry: Understanding Falsely Anthropomorphic Utterances in
Dialog Systems
- arxiv url: http://arxiv.org/abs/2210.12429v1
- Date: Sat, 22 Oct 2022 12:10:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 16:09:05.031416
- Title: Robots-Dont-Cry: Understanding Falsely Anthropomorphic Utterances in
Dialog Systems
- Title(参考訳): robot-dont-cry: 対話システムにおける擬人化発話の理解
- Authors: David Gros, Yu Li, Zhou Yu
- Abstract要約: 非常に人為的な反応は、ユーザーが人間と対話していると考えることを不快に、あるいは暗黙的に騙すかもしれない。
9つの異なるデータソースからサンプリングした約900の2ターンダイアログの実現可能性に関する人間の評価を収集する。
- 参考スコア(独自算出の注目度): 64.10696852552103
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Dialog systems are often designed or trained to output human-like responses.
However, some responses may be impossible for a machine to truthfully say (e.g.
"that movie made me cry"). Highly anthropomorphic responses might make users
uncomfortable or implicitly deceive them into thinking they are interacting
with a human. We collect human ratings on the feasibility of approximately 900
two-turn dialogs sampled from 9 diverse data sources. Ratings are for two
hypothetical machine embodiments: a futuristic humanoid robot and a digital
assistant. We find that for some data-sources commonly used to train dialog
systems, 20-30% of utterances are not viewed as possible for a machine. Rating
is marginally affected by machine embodiment. We explore qualitative and
quantitative reasons for these ratings. Finally, we build classifiers and
explore how modeling configuration might affect output permissibly, and discuss
implications for building less falsely anthropomorphic dialog systems.
- Abstract(参考訳): ダイアログシステムは、しばしば人間のような応答を出力するように設計または訓練される。
しかし、機械が真実を言うのが不可能な反応もある(例:「あの映画は私を泣かせた」)。
非常に人為的な反応は、ユーザーが人間と対話していると考えることを不快または暗黙的に騙すかもしれない。
9つの異なるデータソースからサンプリングした約900の2ターンダイアログの実現可能性に関する人間の評価を収集する。
レーティングは、未来的なヒューマノイドロボットとデジタルアシスタントの2つの仮説的マシン実施のためのものだ。
ダイアログシステムのトレーニングに一般的に使用されるデータソースでは、マシンでは20~30%の発話ができないことが分かっています。
レーティングは機械の実施によって影響を受けやすい。
これらの評価の質的・定量的な理由を考察する。
最後に、分類器を構築し、モデル構成が出力にどう影響するかを検証し、擬人化の少ないダイアログシステムを構築することの意味について議論する。
関連論文リスト
- From Pixels to Personas: Investigating and Modeling Self-Anthropomorphism in Human-Robot Dialogues [29.549159419088294]
ロボットにおける自己人類同型は、好みや感情を表現するなど、対話における人間のような特徴の表示を通じて、自分自身を表わす。
これら2種類の応答に有意な差異を示し、あるタイプから別のタイプへの遷移を提案する。
Pix2Personaは、倫理的かつ魅力的なAIシステムを様々な実施形態で開発することを目的とした、新しいデータセットである。
論文 参考訳(メタデータ) (2024-10-04T19:06:24Z) - Leveraging Implicit Feedback from Deployment Data in Dialogue [83.02878726357523]
本研究では,ユーザ間の自然な対話とデプロイモデルから学習することで,社会的会話エージェントの改善について検討する。
我々は、ユーザ応答長、感情、未来の人間の発話の反応などの信号を、収集された対話エピソードで活用する。
論文 参考訳(メタデータ) (2023-07-26T11:34:53Z) - Dialogue Evaluation with Offline Reinforcement Learning [2.580163308334609]
タスク指向対話システムは,自然言語対話によるユーザ目標達成を目的としている。
これらは、開発フェーズのすべてのイテレーションで達成不可能な、人間のユーザによって理想的に評価されます。
静的コーパスに基づく対話評価のためのオフライン強化学習を提案する。
論文 参考訳(メタデータ) (2022-09-02T08:32:52Z) - What is wrong with you?: Leveraging User Sentiment for Automatic Dialog
Evaluation [73.03318027164605]
本稿では,次のユーザの発話から自動的に抽出できる情報をプロキシとして利用して,前のシステム応答の質を測定することを提案する。
本モデルは,実際のユーザおよび有償ユーザから収集した音声と書面の両方のオープンドメインダイアログコーパスを一般化する。
論文 参考訳(メタデータ) (2022-03-25T22:09:52Z) - User Response and Sentiment Prediction for Automatic Dialogue Evaluation [69.11124655437902]
本稿では,次のユーザ発話の感情をターンレベル評価やダイアログレベル評価に利用することを提案する。
実験により,本モデルによる音声対話データセットと音声対話データセットの両方において,既存の自動評価指標よりも優れた結果が得られた。
論文 参考訳(メタデータ) (2021-11-16T22:19:17Z) - The R-U-A-Robot Dataset: Helping Avoid Chatbot Deception by Detecting
User Questions About Human or Non-Human Identity [41.43519695929595]
システムデザイナがシステムに対して,その人間以外のアイデンティティを確認できるようにする方法を理解することを目的としている。
ロボットの意図にまつわる2500以上のフレーズを集めていますか?
分類器を比較して、意図を認識し、精度/リコールとモデルの複雑さのトレードオフについて議論する。
論文 参考訳(メタデータ) (2021-06-04T20:04:33Z) - Revealing Persona Biases in Dialogue Systems [64.96908171646808]
対話システムにおけるペルソナバイアスに関する最初の大規模研究について述べる。
我々は、異なる社会階級、性的指向、人種、性別のペルソナの分析を行う。
BlenderおよびDialoGPT対話システムの研究では、ペルソナの選択が生成された応答の害の程度に影響を与える可能性があることを示しています。
論文 参考訳(メタデータ) (2021-04-18T05:44:41Z) - A Taxonomy of Empathetic Response Intents in Human Social Conversations [1.52292571922932]
自然言語処理コミュニティでは、オープンドメインの会話エージェントがますます人気を高めている。
課題のひとつは、共感的な方法で会話できるようにすることです。
現在のニューラルレスポンス生成手法は、大規模な会話データからエンドツーエンドの学習のみに頼って対話を生成する。
近年,対話act/intentモデリングとニューラルレスポンス生成を組み合わせることが期待されている。
論文 参考訳(メタデータ) (2020-12-07T21:56:45Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
ソーシャルメディアのフィードバックデータを利用して、フィードバック予測のための大規模なトレーニングデータセットを構築します。
我々は,1300万対の人間のフィードバックデータに基づくGPT-2モデルであるDialogRPTを訓練した。
我々のランキングは、Redditのフィードバックを予測する上で、従来のダイアログの難易度ベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-15T10:50:05Z) - Speaker Sensitive Response Evaluation Model [17.381658875470638]
本稿では,生成した応答と会話コンテキストとの類似性に基づく自動評価モデルを提案する。
ラベルのない会話コーパスからモデルパラメータを学習する。
我々のモデルは、追加の訓練なしに映画対話に適用できることが示される。
論文 参考訳(メタデータ) (2020-06-12T08:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。