NeuroPrim: An Attention-based Model for Solving NP-hard Spanning Tree
Problems
- URL: http://arxiv.org/abs/2210.12453v2
- Date: Sat, 10 Jun 2023 16:21:03 GMT
- Title: NeuroPrim: An Attention-based Model for Solving NP-hard Spanning Tree
Problems
- Authors: Yuchen Shi, Congying Han, Tiande Guo
- Abstract summary: We propose NeuroPrim, a novel framework for solving various spanning tree problems by defining a Decision Process (MDP) for general optimization problems on graphs.
We apply our framework to three difficult problems on Euclidean space: the Degree-constrained Minimum Spanning Tree (DCMST) problem, the Minimum Cost Spanning Tree (MRCST) problem, and the Steiner Tree Problem in Routing graphs (STP)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spanning tree problems with specialized constraints can be difficult to solve
in real-world scenarios, often requiring intricate algorithmic design and
exponential time. Recently, there has been growing interest in end-to-end deep
neural networks for solving routing problems. However, such methods typically
produce sequences of vertices, which makes it difficult to apply them to
general combinatorial optimization problems where the solution set consists of
edges, as in various spanning tree problems. In this paper, we propose
NeuroPrim, a novel framework for solving various spanning tree problems by
defining a Markov Decision Process (MDP) for general combinatorial optimization
problems on graphs. Our approach reduces the action and state space using
Prim's algorithm and trains the resulting model using REINFORCE. We apply our
framework to three difficult problems on Euclidean space: the
Degree-constrained Minimum Spanning Tree (DCMST) problem, the Minimum Routing
Cost Spanning Tree (MRCST) problem, and the Steiner Tree Problem in graphs
(STP). Experimental results on literature instances demonstrate that our model
outperforms strong heuristics and achieves small optimality gaps of up to 250
vertices. Additionally, we find that our model has strong generalization
ability, with no significant degradation observed on problem instances as large
as 1000. Our results suggest that our framework can be effective for solving a
wide range of combinatorial optimization problems beyond spanning tree
problems.
Related papers
- An Unsupervised Learning Framework Combined with Heuristics for the Maximum Minimal Cut Problem [5.092968949752308]
This work proposes an unsupervised learning framework combined with Maximums for MMCP.
A crucial observation is that each solution corresponds to at least one spanning tree.
We conduct extensive experiments to evaluate our framework and give a specific application.
arXiv Detail & Related papers (2024-08-16T02:07:34Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
We propose leveraging recent advancements in neural reasoning to improve the learning of CO problems.
We suggest pre-training our neural model on relevant algorithms before training it on CO instances.
Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.
arXiv Detail & Related papers (2023-05-18T13:59:02Z) - Learning to Prune Instances of Steiner Tree Problem in Graphs [0.47138177023764655]
We consider the Steiner tree problem on graphs where we are given a set of nodes.
The goal is to find a tree sub-graph that contains all nodes in the given set, potentially including additional nodes.
arXiv Detail & Related papers (2022-08-25T10:31:00Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
We introduce a novel Neural Improvement (NI) model capable of handling graph-based problems where information is encoded in the nodes, edges, or both.
The presented model serves as a fundamental component for hill-climbing-based algorithms that guide the selection of neighborhood operations for each.
arXiv Detail & Related papers (2022-06-01T10:35:29Z) - Learning to Solve Combinatorial Graph Partitioning Problems via
Efficient Exploration [72.15369769265398]
Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem.
Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73%.
arXiv Detail & Related papers (2022-05-27T17:13:10Z) - What's Wrong with Deep Learning in Tree Search for Combinatorial
Optimization [8.879790406465556]
We present an open-source benchmark suite for the NP-hard Maximum Independent Set problem, in both its weighted and unweighted variants.
We also conduct an in-depth analysis of the popular guided tree search algorithm by Li et al. [NeurIPS 2018], testing various configurations on small and large synthetic and real-world graphs.
We show that the graph convolution network used in the tree search does not learn a meaningful representation of the solution structure, and can in fact be replaced by random values.
arXiv Detail & Related papers (2022-01-25T17:37:34Z) - Combinatorial Optimization with Physics-Inspired Graph Neural Networks [0.0]
We show how graph neural networks can be used to solve optimization problems.
We find that the neural network performs on par or outperforms existing solvers.
arXiv Detail & Related papers (2021-07-02T16:54:35Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.