論文の概要: Volatility forecasting using Deep Learning and sentiment analysis
- arxiv url: http://arxiv.org/abs/2210.12464v1
- Date: Sat, 22 Oct 2022 14:54:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 18:13:49.755860
- Title: Volatility forecasting using Deep Learning and sentiment analysis
- Title(参考訳): ディープラーニングと感情分析を用いたボラティリティ予測
- Authors: V Ncume, T. L van Zyl, A Paskaramoorthy
- Abstract要約: 本稿では、市場ボラティリティを予測するための感情分析と深層学習を融合した複合モデルを提案する。
次に、過去の感情と前日の変動を利用して予測を行う合成予測モデル、Long-Short-Term-Memory Neural Network法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several studies have shown that deep learning models can provide more
accurate volatility forecasts than the traditional methods used within this
domain. This paper presents a composite model that merges a deep learning
approach with sentiment analysis for predicting market volatility. To classify
public sentiment, we use a Convolutional Neural Network, which obtained data
from Reddit global news headlines. We then describe a composite forecasting
model, a Long-Short-Term-Memory Neural Network method, to use historical
sentiment and the previous day's volatility to make forecasts. We employed this
method on the past volatility of the S\&P500 and the major BRICS indices to
corroborate its effectiveness. Our results demonstrate that including sentiment
can improve deep learning volatility forecasting models. However, in contrast
to return forecasting, the performance benefits of including sentiment appear
for volatility forecasting appears to be market specific.
- Abstract(参考訳): いくつかの研究により、ディープラーニングモデルは、この領域で使用される従来の手法よりも正確なボラティリティ予測を提供できることが示されている。
本稿では、市場ボラティリティを予測するための感情分析と深層学習アプローチを組み合わせた複合モデルを提案する。
一般の感情を分類するために、Redditのグローバルニュースの見出しからデータを得た畳み込みニューラルネットワークを使用します。
次に,複合予測モデルであるlong-short-term-memory neural network法について,過去の感情と前日のボラティリティを用いて予測を行う。
我々は,S&P500の過去のボラティリティと主要なBRICS指標にこの手法を適用し,その有効性を裏付けた。
その結果,感情を含むことによって,ディープラーニングのボラティリティ予測モデルが向上することが示された。
しかし、リターン予測とは対照的に、変動性予測のためのセンチメントを含むパフォーマンスメリットは市場固有のものと思われる。
関連論文リスト
- GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
マーケットのボラティリティを計測し、予測する新しいハイブリッドなDeep Learningモデルを提案する。
他の時系列モデルと比較すると、GINNは決定係数(R2$)、平均正方形誤差(MSE)、平均絶対誤差(MAE)の点で優れたサンプル外予測性能を示した。
論文 参考訳(メタデータ) (2024-09-30T23:53:54Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Deep Learning Enhanced Realized GARCH [6.211385208178938]
本稿では,深層学習(LSTM)とボラティリティ対策の併用によるボラティリティモデリングの新しい手法を提案する。
このLSTMで強化されたGARCHフレームワークは、金融経済学、高周波取引データ、ディープラーニングによるモデリングの進歩を取り入れ、蒸留する。
論文 参考訳(メタデータ) (2023-02-16T00:20:43Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Forex Trading Volatility Prediction using Neural Network Models [6.09960572440709]
本研究では,日々のボラティリティに関する経験的パターンのガイダンスを用いて,ディープラーニングネットワークの構築方法について述べる。
数値計算の結果,多値ペアの入力によるマルチスケール長短期メモリ(LSTM)モデルが常に最先端の精度を実現していることがわかった。
論文 参考訳(メタデータ) (2021-12-02T12:33:12Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。