論文の概要: DMODE: Differential Monocular Object Distance Estimation Module without Class Specific Information
- arxiv url: http://arxiv.org/abs/2210.12596v3
- Date: Tue, 7 May 2024 21:02:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 19:50:32.292158
- Title: DMODE: Differential Monocular Object Distance Estimation Module without Class Specific Information
- Title(参考訳): DMODE:クラス固有情報を持たない微分単分子物体距離推定モジュール
- Authors: Pedram Agand, Michael Chang, Mo Chen,
- Abstract要約: 単分子距離推定のためのクラス非依存手法であるDMODEを提案する。
DMODEは、カメラの動きと時間とともにその大きさの変動を融合させることで、物体の距離を推定する。
我々は,TrackRCNN と EagerMOT からの出力と接点境界ボックスアノテーションを用いて,KITTI MOTS データセット上でのモデルを評価する。
- 参考スコア(独自算出の注目度): 8.552738832104101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing a single camera for measuring object distances is a cost-effective alternative to stereo-vision and LiDAR. Although monocular distance estimation has been explored in the literature, most existing techniques rely on object class knowledge to achieve high performance. Without this contextual data, monocular distance estimation becomes more challenging, lacking reference points and object-specific cues. However, these cues can be misleading for objects with wide-range variation or adversarial situations, which is a challenging aspect of object-agnostic distance estimation. In this paper, we propose DMODE, a class-agnostic method for monocular distance estimation that does not require object class knowledge. DMODE estimates an object's distance by fusing its fluctuation in size over time with the camera's motion, making it adaptable to various object detectors and unknown objects, thus addressing these challenges. We evaluate our model on the KITTI MOTS dataset using ground-truth bounding box annotations and outputs from TrackRCNN and EagerMOT. The object's location is determined using the change in bounding box sizes and camera position without measuring the object's detection source or class attributes. Our approach demonstrates superior performance in multi-class object distance detection scenarios compared to conventional methods.
- Abstract(参考訳): 物体距離を測定するために1台のカメラを使用することは、ステレオビジョンやLiDARに代わる費用対効果がある。
文献では単分子距離推定が研究されているが、既存の手法の多くは高い性能を達成するためにオブジェクトクラスの知識に依存している。
この文脈的データがないと、単一の分子距離推定はより困難になり、参照点やオブジェクト固有の手がかりが欠如する。
しかし、これらの手がかりは、広範囲な変動や逆境的な状況の物体に対して誤解を招く可能性がある。
本稿では,オブジェクトのクラス知識を必要としない単分子距離推定法であるDMODEを提案する。
DMODEは、カメラの動きと時間とともにその大きさの変動を融合させることで物体の距離を推定し、様々な物体検出器や未知の物体に適応し、これらの課題に対処する。
我々は,TrackRCNN と EagerMOT からの出力と接点境界ボックスアノテーションを用いて,KITTI MOTS データセット上でのモデルを評価する。
オブジェクトの位置は、オブジェクトの検出源やクラス属性を測定することなく、境界ボックスサイズとカメラ位置の変化を用いて決定される。
提案手法は,従来の手法と比較して,多クラス物体距離検出のシナリオにおいて優れた性能を示す。
関連論文リスト
- Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T08:15:18Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - Long Range Object-Level Monocular Depth Estimation for UAVs [0.0]
本稿では,画像からモノクロ物体を長距離検出するための最先端手法の新たな拡張法を提案する。
まず、回帰タスクとして深度推定をモデル化する際、SigmoidおよびReLUライクエンコーディングを提案する。
次に,深度推定を分類問題とし,訓練損失の計算にソフトアルグマックス関数を導入する。
論文 参考訳(メタデータ) (2023-02-17T15:26:04Z) - RLM-Tracking: Online Multi-Pedestrian Tracking Supported by Relative
Location Mapping [5.9669075749248774]
マルチオブジェクトトラッキングの問題は、公安、輸送、自動運転車、ロボティクス、人工知能を含む他の領域で広く利用されている、基本的なコンピュータビジョン研究の焦点である。
本稿では、オブジェクト textbfRelative Location Mapping (RLM) モデルと textbfTarget Region Density (TRD) モデルを含む、上記の問題に対する新しいマルチオブジェクトトラッカーを設計する。
新しいトラッカーは、オブジェクト間の位置関係の違いに敏感である。
物体の密度に応じてリアルタイムで異なる領域に低スコア検出フレームを導入することができる
論文 参考訳(メタデータ) (2022-10-19T11:37:14Z) - Shape-Aware Monocular 3D Object Detection [15.693199934120077]
単分子3次元物体検出モデルを提案する。
この検出は、対象物を取り巻く無関係な領域からの干渉をほとんど避ける。
単分子3次元物体検出モデルに対して,新しい評価基準,すなわち平均深度類似度(ADS)を提案する。
論文 参考訳(メタデータ) (2022-04-19T07:43:56Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Learning to Track Object Position through Occlusion [32.458623495840904]
オクルージョンは、物体検出器やトラッカーが直面する最も重要な課題の1つである。
本稿では,領域ベースビデオオブジェクト検出装置の成功に基づくトラッキング・バイ・検出手法を提案する。
提案手法は,インターネットから収集した家具組立ビデオのデータセットにおいて,優れた結果が得られる。
論文 参考訳(メタデータ) (2021-06-20T22:29:46Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
そこで本研究では,乱れたオブジェクトを明示的に分離し,オブジェクト深度推定のための複数のアプローチを適応的に組み合わせたモノクル3次元オブジェクト検出のためのフレキシブルなフレームワークを提案する。
実験の結果,本手法はkittiベンチマークテストセットにおいて,中等度レベルが27%,硬度が30%と,最先端法を27%上回った。
論文 参考訳(メタデータ) (2021-04-06T07:01:28Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
そこで本研究では,視覚領域における視覚的特徴と視覚的対象の両方を学習するために,視覚的特徴を合成することを提案する。
クラスセマンティックスを用いた新しい生成モデルを用いて特徴を生成するだけでなく,特徴を識別的に分離する。
論文 参考訳(メタデータ) (2020-10-19T12:36:11Z) - Single View Metrology in the Wild [94.7005246862618]
本研究では,物体の3次元の高さや地上のカメラの高さで表現されるシーンの絶対的なスケールを再現する,単一ビューメロジに対する新しいアプローチを提案する。
本手法は,被写体の高さなどの3Dエンティティによる未知のカメラとの相互作用から,弱い教師付き制約を抑えるために設計されたディープネットワークによって学習されたデータ駆動の先行情報に依存する。
いくつかのデータセットと仮想オブジェクト挿入を含むアプリケーションに対して、最先端の定性的かつ定量的な結果を示す。
論文 参考訳(メタデータ) (2020-07-18T22:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。