論文の概要: Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2403.13375v1
- Date: Wed, 20 Mar 2024 08:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:38:28.100711
- Title: Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images
- Title(参考訳): リモートセンシング画像における記憶可能なコントラスト学習によるオブジェクト指向物体検出
- Authors: Jiawei Zhou, Wuzhou Li, Yi Cao, Hongtao Cai, Xiang Li,
- Abstract要約: リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
- 参考スコア(独自算出の注目度): 11.217630579076237
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing due to its ability to reduce the dependency on large amounts of annotated data. However, two challenges persist in this area: (1) axis-aligned proposals, which can result in misalignment for arbitrarily oriented objects, and (2) the scarcity of annotated data still limits the performance for unseen object categories. To address these issues, we propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC). Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects, leading to enhanced detection performance. To the best of our knowledge, we are the first to address oriented object detection in the few-shot setting for remote sensing images. To address the challenging issue of object misclassification, we introduce a supervised contrastive learning module with a dynamically updated memory bank. This module enables the use of large batches of negative samples and enhances the model's capability to learn discriminative features for unseen classes. We conduct comprehensive experiments on the DOTA and HRSC2016 datasets, and our model achieves state-of-the-art performance on the few-shot oriented object detection task. Code and pretrained models will be released.
- Abstract(参考訳): Few-shot Object Detection (FSOD) は、大量の注釈付きデータへの依存を減らすことができるため、リモートセンシングの分野で大きな研究の注目を集めている。
しかし, この領域では, 1) 任意指向オブジェクトに対する不整合を生じる軸整列提案, (2) 注釈付きデータの不足が, 未確認オブジェクトカテゴリのパフォーマンスを制限している,という2つの課題が続いている。
これらの課題に対処するために,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) と呼ばれる,リモートセンシングのための新しいFSOD手法を提案する。
具体的には、従来の水平境界ボックスの代わりに指向的境界ボックスを用いて、任意方向の空中物体のより優れた特徴表現を学習し、検出性能を向上する。
我々の知る限りでは、リモートセンシング画像のための数ショット設定において、指向性物体検出に最初に取り組む人物である。
オブジェクトの誤分類の問題に対処するために,動的に更新されたメモリバンクを備えた教師付きコントラスト学習モジュールを導入する。
このモジュールは、負のサンプルの大きなバッチの使用を可能にし、見当たらないクラスの識別機能を学習するモデルの能力を強化する。
我々はDOTAとHRSC2016データセットの総合的な実験を行い、このモデルにより、ショット指向のオブジェクト検出タスクにおける最先端のパフォーマンスが達成される。
コードと事前訓練されたモデルがリリースされる。
関連論文リスト
- Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery [17.156864650143678]
従来の2段階アーキテクチャに基づく数発の物体検出器を開発した。
大規模な事前訓練モデルを使用して、クラス参照の埋め込みやプロトタイプを構築する。
課題と稀なオブジェクトを含む2つのリモートセンシングデータセットの評価を行う。
論文 参考訳(メタデータ) (2024-03-08T15:20:27Z) - Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects [23.171410277239534]
物体検出のための自己学習型FSOD (ST-FSOD) アプローチを提案する。
提案手法は,様々なFSOD設定における最先端性能を大きなマージンで向上させる。
論文 参考訳(メタデータ) (2023-09-19T13:00:25Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - USD: Unknown Sensitive Detector Empowered by Decoupled Objectness and
Segment Anything Model [14.080744645704751]
Open World Object Detection (OWOD) は、新しいコンピュータビジョンタスクである。
本稿では,この2つの境界の学習をデコーダ層に分割する,シンプルで効果的な学習戦略であるDecoupled Objectness Learning(DOL)を提案する。
また、擬似ラベルとソフトウェイト戦略を用いてノイズの負の影響を緩和する補助的スーパービジョンフレームワーク(ASF)も導入する。
論文 参考訳(メタデータ) (2023-06-04T06:42:09Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
本稿では, 主流の擬似ラベリングフレームワーク上に構築された, SOOD と呼ばれる, 半教師付きオブジェクト指向物体検出モデルを提案する。
提案した2つの損失をトレーニングした場合,SOODはDOTA-v1.5ベンチマークの様々な設定下で,最先端のSSOD法を超越することを示した。
論文 参考訳(メタデータ) (2023-04-10T11:10:42Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
我々は,クラス内セマンティック・ディバージングコンポーネントとクラス間構造保存コンポーネントを含む,新しいゼロショットオブジェクト検出フレームワークを構築した。
リモートセンシング画像においてゼロショット物体検出を行う最初の研究である。
論文 参考訳(メタデータ) (2022-01-01T03:09:15Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Uncertainty-aware Joint Salient Object and Camouflaged Object Detection [43.01556978979627]
本論文では, 相反する情報を活用し, 対流物体検出と迷彩物体検出の両方の検出能力を高めるパラダイムを提案する。
この2つのタスクの矛盾する属性を明示的にモデル化する類似度測度モジュールを導入する。
両タスクのデータセットにおけるラベル付けの不確実性を考慮して,高次類似度測定とネットワーク信頼度推定を両立させる逆学習ネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-06T16:05:10Z) - Few-shot Object Detection on Remote Sensing Images [11.40135025181393]
リモートセンシング画像におけるオブジェクト検出のための数ショットの学習手法を提案する。
我々は、YOLOv3アーキテクチャに基づいて、少数ショットオブジェクト検出モデルを構築し、マルチスケールオブジェクト検出フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-14T07:18:10Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。