論文の概要: Active Exploration for Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2210.12806v1
- Date: Sun, 23 Oct 2022 18:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 21:35:21.368555
- Title: Active Exploration for Robotic Manipulation
- Title(参考訳): ロボットマニピュレーションのためのアクティブ探索
- Authors: Tim Schneider, Boris Belousov, Georgia Chalvatzaki, Diego Romeres,
Devesh K. Jha and Jan Peters
- Abstract要約: 本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
- 参考スコア(独自算出の注目度): 40.39182660794481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robotic manipulation stands as a largely unsolved problem despite significant
advances in robotics and machine learning in recent years. One of the key
challenges in manipulation is the exploration of the dynamics of the
environment when there is continuous contact between the objects being
manipulated. This paper proposes a model-based active exploration approach that
enables efficient learning in sparse-reward robotic manipulation tasks. The
proposed method estimates an information gain objective using an ensemble of
probabilistic models and deploys model predictive control (MPC) to plan actions
online that maximize the expected reward while also performing directed
exploration. We evaluate our proposed algorithm in simulation and on a real
robot, trained from scratch with our method, on a challenging ball pushing task
on tilted tables, where the target ball position is not known to the agent
a-priori. Our real-world robot experiment serves as a fundamental application
of active exploration in model-based reinforcement learning of complex robotic
manipulation tasks.
- Abstract(参考訳): ロボット操作は、近年のロボット工学と機械学習の大きな進歩にもかかわらず、ほとんど未解決の問題である。
操作における重要な課題の1つは、操作対象間の継続的な接触がある場合の環境のダイナミクスの探求である。
本稿では,ロボット操作タスクにおける効率的な学習を可能にするモデルベースの能動的探索手法を提案する。
提案手法は,確率モデルのアンサンブルを用いて情報ゲイン目標を推定し,モデル予測制御(MPC)をオンラインに展開し,期待される報酬を最大化し,かつ有向探索を行う。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,対象のボール位置がエージェントa-プリオリに知られていない傾斜したテーブル上での挑戦的な球押し作業において,スクラッチから訓練した。
実世界のロボット実験は、複雑なロボット操作タスクのモデルベース強化学習における能動的探索の基本的な応用として機能する。
関連論文リスト
- Affordance-based Robot Manipulation with Flow Matching [6.863932324631107]
本フレームワークは,ロボット操作のためのフローマッチングにより,手頃なモデル学習とトラジェクトリ生成を統一する。
評価の結果,提案手法は,言語プロンサによる手軽さを学習し,競争性能を向上することがわかった。
本フレームワークは,ロボット操作のためのフローマッチングにより,相性モデル学習と軌道生成をシームレスに統合する。
論文 参考訳(メタデータ) (2024-09-02T09:11:28Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
ロボット工学における現在の最先端のアクション表現は、ロボットのアクションに対する適切な効果駆動学習を欠いている。
連続運動空間の離散化と「アクションプロトタイプ」生成のための教師なしアルゴリズムを提案する。
シミュレーションされた階段登上補強学習課題について,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T13:28:52Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
本研究では,確率的生成モデルのパラメータを学習することにより,対象物の順序や位置を効率的に推定できる新しい計画法を提案する。
このモデルにより、ロボットは、Tidied環境で収集されたマルチモーダルセンサ情報を用いて、オブジェクトと場所の共起確率の分布を学習することができる。
我々は,世界ロボットサミット2018国際ロボティクスコンペティションのTidy Up Hereタスクの条件を再現する実験シミュレーションにより,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2020-02-10T11:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。