論文の概要: Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots
- arxiv url: http://arxiv.org/abs/2002.03671v2
- Date: Wed, 10 Feb 2021 08:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 09:18:39.066065
- Title: Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots
- Title(参考訳): サービスロボットによる家庭環境整備のための空間概念に基づく自律計画
- Authors: Akira Taniguchi, Shota Isobe, Lotfi El Hafi, Yoshinobu Hagiwara,
Tadahiro Taniguchi
- Abstract要約: 本研究では,確率的生成モデルのパラメータを学習することにより,対象物の順序や位置を効率的に推定できる新しい計画法を提案する。
このモデルにより、ロボットは、Tidied環境で収集されたマルチモーダルセンサ情報を用いて、オブジェクトと場所の共起確率の分布を学習することができる。
我々は,世界ロボットサミット2018国際ロボティクスコンペティションのTidy Up Hereタスクの条件を再現する実験シミュレーションにより,提案手法の有効性を評価する。
- 参考スコア(独自算出の注目度): 5.739787445246959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tidy-up tasks by service robots in home environments are challenging in
robotics applications because they involve various interactions with the
environment. In particular, robots are required not only to grasp, move, and
release various home objects but also to plan the order and positions for
placing the objects. In this paper, we propose a novel planning method that can
efficiently estimate the order and positions of the objects to be tidied up by
learning the parameters of a probabilistic generative model. The model allows a
robot to learn the distributions of the co-occurrence probability of the
objects and places to tidy up using the multimodal sensor information collected
in a tidied environment. Additionally, we develop an autonomous robotic system
to perform the tidy-up operation. We evaluate the effectiveness of the proposed
method by an experimental simulation that reproduces the conditions of the Tidy
Up Here task of the World Robot Summit 2018 international robotics competition.
The simulation results show that the proposed method enables the robot to
successively tidy up several objects and achieves the best task score among the
considered baseline tidy-up methods.
- Abstract(参考訳): 家庭環境におけるサービスロボットによるタスクの整列は,環境との相互作用が多岐にわたるため,ロボット応用において困難である。
特に、ロボットは様々なホームオブジェクトを把握、移動、解放するだけでなく、オブジェクトを配置するための順序と位置を計画する必要がある。
本稿では,確率的生成モデルのパラメータを学習することにより,対象物の順序や位置を効率的に推定できる新しい計画手法を提案する。
このモデルにより、ロボットは、Tidied環境で収集されたマルチモーダルセンサ情報を用いて、オブジェクトと場所の共起確率の分布を学習することができる。
さらに,この作業を行う自律型ロボットシステムの開発を行った。
我々は,世界ロボットサミット2018国際ロボティクスコンペティションのTidy Up Hereタスクの条件を再現する実験シミュレーションにより,提案手法の有効性を評価する。
シミュレーションの結果,提案手法により,ロボットが複数のオブジェクトを逐次タイディアップし,検討されたベースラインタイディアップ手法の中で最高のタスクスコアを得ることができることがわかった。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
大規模言語モデル(LLM)は、意味情報の理解と処理のための強力な計画と推論能力を示している。
本稿では,ロボットが与えられたテキストによる指示の下で,自律的に動作や低レベル実行を計画できる新しい言語モデルベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-15T17:33:32Z) - Planning Robot Placement for Object Grasping [5.327052729563043]
物体の摘み取りなどの操作に基づく活動を行う場合、移動ロボットは、実行を成功させる位置で基地を位置決めする必要がある。
この問題に対処するために、顕著なアプローチは、通常、対象のオブジェクトに対する把握ポーズを提供するために、プランナーを高価に把握することに依存する。
そこで我々は,まず環境との衝突を起こさないロボット配置を見つけ,次に最適な配置候補を見出すよう評価する。
論文 参考訳(メタデータ) (2024-05-26T20:57:32Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - Summarizing a virtual robot's past actions in natural language [0.3553493344868413]
本稿では,ロボット行動と自然言語記述とを一致させた一般的なデータセットを,ロボット行動要約作業のトレーニング場として活用する方法について述べる。
自動プランナーが使用する動作の中間テキスト表現や、ロボットの自我中心の映像フレームから、このような要約を生成するためのいくつかの方法を提案し、テストする。
論文 参考訳(メタデータ) (2022-03-13T15:00:46Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Towards Multi-Robot Task-Motion Planning for Navigation in Belief Space [1.4824891788575418]
本稿では,知識集約領域におけるナビゲーションのためのマルチロボットタスクモーション計画フレームワークを提案する。
特に,ロボット間の相互観測を取り入れた分散マルチロボットの設定について考察する。
このフレームワークは、運動中の運動計画と感覚の不確実性を目的としており、これは正式には信仰空間計画として知られている。
論文 参考訳(メタデータ) (2020-10-01T06:45:17Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。