Deep Equilibrium Approaches to Diffusion Models
- URL: http://arxiv.org/abs/2210.12867v1
- Date: Sun, 23 Oct 2022 22:02:19 GMT
- Title: Deep Equilibrium Approaches to Diffusion Models
- Authors: Ashwini Pokle, Zhengyang Geng, Zico Kolter
- Abstract summary: Diffusion-based generative models are extremely effective in generating high-quality images.
These models typically require long sampling chains to produce high-fidelity images.
We look at diffusion models through a different perspective, that of a (deep) equilibrium (DEQ) fixed point model.
- Score: 1.4275201654498746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based generative models are extremely effective in generating
high-quality images, with generated samples often surpassing the quality of
those produced by other models under several metrics. One distinguishing
feature of these models, however, is that they typically require long sampling
chains to produce high-fidelity images. This presents a challenge not only from
the lenses of sampling time, but also from the inherent difficulty in
backpropagating through these chains in order to accomplish tasks such as model
inversion, i.e. approximately finding latent states that generate known images.
In this paper, we look at diffusion models through a different perspective,
that of a (deep) equilibrium (DEQ) fixed point model. Specifically, we extend
the recent denoising diffusion implicit model (DDIM; Song et al. 2020), and
model the entire sampling chain as a joint, multivariate fixed point system.
This setup provides an elegant unification of diffusion and equilibrium models,
and shows benefits in 1) single image sampling, as it replaces the fully-serial
typical sampling process with a parallel one; and 2) model inversion, where we
can leverage fast gradients in the DEQ setting to much more quickly find the
noise that generates a given image. The approach is also orthogonal and thus
complementary to other methods used to reduce the sampling time, or improve
model inversion. We demonstrate our method's strong performance across several
datasets, including CIFAR10, CelebA, and LSUN Bedrooms and Churches.
Related papers
- Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.
Our method treats the time dimension of a video as the batch dimension image diffusion models.
We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
Diffusion models rely on the current sample to denoise the next one, possibly resulting in denoising instability.
In this paper, we reinterpret the iterative denoising process as model optimization and leverage a moving average mechanism to ensemble all the prior samples.
We name the complete approach "Moving Average Sampling in Frequency domain (MASF)"
arXiv Detail & Related papers (2024-03-26T16:57:55Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - Accelerating Score-based Generative Models for High-Resolution Image
Synthesis [42.076244561541706]
Score-based generative models (SGMs) have recently emerged as a promising class of generative models.
In this work, we consider the acceleration of high-resolution generation with SGMs.
We introduce a novel Target Distribution Sampling Aware (TDAS) method by leveraging the structural priors in space and frequency domains.
arXiv Detail & Related papers (2022-06-08T17:41:14Z) - Dynamic Dual-Output Diffusion Models [100.32273175423146]
Iterative denoising-based generation has been shown to be comparable in quality to other classes of generative models.
A major drawback of this method is that it requires hundreds of iterations to produce a competitive result.
Recent works have proposed solutions that allow for faster generation with fewer iterations, but the image quality gradually deteriorates.
arXiv Detail & Related papers (2022-03-08T11:20:40Z) - Global Context with Discrete Diffusion in Vector Quantised Modelling for
Image Generation [19.156223720614186]
The integration of Vector Quantised Variational AutoEncoder with autoregressive models as generation part has yielded high-quality results on image generation.
We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context.
arXiv Detail & Related papers (2021-12-03T09:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.