論文の概要: On representation of natural image patches
- arxiv url: http://arxiv.org/abs/2210.13004v1
- Date: Mon, 24 Oct 2022 07:50:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 15:32:29.876832
- Title: On representation of natural image patches
- Title(参考訳): 自然画像のパッチ表現について
- Authors: Cheng Guo
- Abstract要約: 自然画像の局所的な統計をモデル化するために、偶数符号という教師なし学習法を導出する。
学習モデルは、初期視覚システムのような局所的なエッジ検出と方向選択ユニットも備えている。
- 参考スコア(独自算出の注目度): 3.261599248682794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Starting from the first principle I derive an unsupervised learning method
named even code to model local statistics of natural images. The first version
uses orthogonal bases with independent states to model simple probability
distribution of a few pixels. The second version uses a microscopic loss
function to learn a nonlinear sparse binary representation of image patches.
The distance in the binary representation space reflects image patch
similarity. The learned model also has local edge detecting and orientation
selective units like early visual systems.
- Abstract(参考訳): 第一原理から始めて、自然画像の局所統計をモデル化するために even code という教師なし学習法を導出する。
最初のバージョンでは、独立状態を持つ直交基底を用いて、数ピクセルの単純な確率分布をモデル化している。
第2版では、顕微鏡的損失関数を使用して、画像パッチの非線形スパースバイナリ表現を学習する。
二項表現空間における距離は、画像パッチの類似性を反映する。
学習モデルは、初期視覚システムのような局所エッジ検出と方向選択ユニットも備えている。
関連論文リスト
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
最近の研究は、高密度知覚タスクのためのT2I拡散モデルを簡単に調整することで有望な結果を示す。
拡散前処理における伝達効率と性能に影響を及ぼす重要な要因を徹底的に検討する。
我々の研究は、濃密な視覚認知タスクに特化した効果的な決定論的ワンステップ微調整パラダイムであるGenPerceptの開発において頂点に達した。
論文 参考訳(メタデータ) (2024-03-10T04:23:24Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Generative Forests [23.554594285885273]
私たちは、表データという最も一般的な形式のデータのうちの1つを表わすデータのための生成AIに焦点を合わせています。
本稿では,このような課題に適合する森林モデルの新しい強力なクラスと,強力な収束保証を備えた簡単なトレーニングアルゴリズムを提案する。
これらのタスクに関する追加実験により、我々のモデルは、多種多様な技術手法に対する優れた競争相手になり得ることが判明した。
論文 参考訳(メタデータ) (2023-08-07T14:58:53Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
トレーニング中に推論ネットワークを用いて生成ネットワークを増強する2段階のジョイントアイデアを提案する。
これにより、ビジュアルドメインとセマンティックドメイン間の効果的な知識伝達のための強力な相互モーダル相互作用が提供される。
提案手法は,4つのベンチマークデータセットに対して,いくつかの最先端手法に対して評価し,その性能を示す。
論文 参考訳(メタデータ) (2020-07-15T15:34:09Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
本稿では,このモデルから生成された予測が正確であるような拡散モデルの学習の問題に対処する。
本稿では,スケーラブルな動的メッセージパッシング手法に基づく計算効率のよいアルゴリズムを提案する。
学習モデルからの抽出可能な推論は,元のモデルと比較して限界確率の予測精度がよいことを示す。
論文 参考訳(メタデータ) (2020-07-13T17:58:21Z) - Focus of Attention Improves Information Transfer in Visual Features [80.22965663534556]
本稿では,真のオンライン環境下での視覚情報伝達のための教師なし学習に焦点を当てた。
エントロピー項の計算は、エントロピー項のオンライン推定を行う時間的プロセスによって行われる。
入力確率分布をよりよく構成するために,人間のような注目モデルを用いる。
論文 参考訳(メタデータ) (2020-06-16T15:07:25Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。