論文の概要: E-Valuating Classifier Two-Sample Tests
- arxiv url: http://arxiv.org/abs/2210.13027v2
- Date: Tue, 30 Apr 2024 10:02:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 20:26:54.533896
- Title: E-Valuating Classifier Two-Sample Tests
- Title(参考訳): E-Valuating Classifier Two-Sample Tests
- Authors: Teodora Pandeva, Tim Bakker, Christian A. Naesseth, Patrick Forré,
- Abstract要約: 我々のテストは、既存の作業量分割確率比テストと予測独立性テストのアイデアを組み合わせたものです。
得られたE値は、逐次2サンプルテストに適している。
- 参考スコア(独自算出の注目度): 11.248868528186332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a powerful deep classifier two-sample test for high-dimensional data based on E-values, called E-value Classifier Two-Sample Test (E-C2ST). Our test combines ideas from existing work on split likelihood ratio tests and predictive independence tests. The resulting E-values are suitable for anytime-valid sequential two-sample tests. This feature allows for more effective use of data in constructing test statistics. Through simulations and real data applications, we empirically demonstrate that E-C2ST achieves enhanced statistical power by partitioning datasets into multiple batches beyond the conventional two-split (training and testing) approach of standard classifier two-sample tests. This strategy increases the power of the test while keeping the type I error well below the desired significance level.
- Abstract(参考訳): 本稿では,E値に基づく高次元データに対する強力な深層分類器2サンプルテスト,E値分類器2サンプルテスト(E-C2ST)を提案する。
我々のテストは、分割可能性比検定と予測独立性検定に関する既存の研究のアイデアを組み合わせている。
得られたE値は、任意の値のシーケンシャルな2サンプルテストに適している。
この機能により、テスト統計を構築する上で、より効果的なデータの利用が可能になる。
シミュレーションや実データアプリケーションを通じて、E-C2STは、標準分類器2サンプルテストの従来の2分割(トレーニングとテスト)アプローチを超えて、データセットを複数のバッチに分割することで、拡張された統計的パワーを達成することを実証的に実証する。
この戦略は、I型エラーを所望の重要レベルよりはるかに低く保ちながら、テストのパワーを高める。
関連論文リスト
- Advanced Tutorial: Label-Efficient Two-Sample Tests [15.574402626262053]
このチュートリアルでは、アナリストが2つのサンプルから多くの機能を持つコンテキストにおける2サンプルテストについて説明する。
機械学習では、アクティブラーニングにおいて同様のシナリオが研究されている。
このチュートリアルは、アクティブな学習概念を、このテキスト版コスト設定内での2サンプルテストに拡張する。
論文 参考訳(メタデータ) (2025-01-07T06:43:18Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [117.72709110877939]
テスト時間適応(TTA)は、事前訓練されたモデルをテスト中に、予測する前にラベルのないデータに適応する可能性がある。
TTAはテスト時間領域適応、テスト時間バッチ適応、オンラインテスト時間適応といったテストデータの形態に基づいて、いくつかの異なるグループに分類される。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - Active Sequential Two-Sample Testing [18.99517340397671]
サンプル測定が安価に利用できる新しいシナリオでは,この2サンプルテストの問題を考慮する。
我々は,emphactiveNIST-sampleテストフレームワークを考案し,逐次クエリだけでなく,emphactivelyクエリも考案した。
実際に、我々はフレームワークのインスタンス化を導入し、いくつかの実験を用いて評価する。
論文 参考訳(メタデータ) (2023-01-30T02:23:49Z) - Model-Free Sequential Testing for Conditional Independence via Testing
by Betting [8.293345261434943]
提案されたテストでは、任意の依存関係構造を持つ入ってくるi.d.データストリームを分析できる。
重要な結果が検出されれば,オンライン上でのデータポイントの処理を可能とし,データ取得を停止する。
論文 参考訳(メタデータ) (2022-10-01T20:05:33Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - An Optimal Witness Function for Two-Sample Testing [13.159512679346685]
証人2サンプルテスト(WiTS)と呼ばれる1次元証人関数に基づくデータ依存テスト統計法を提案する。
特性カーネルに基づく WiTS テストは,任意の固定された代替品に対して一貫したものであることを示す。
論文 参考訳(メタデータ) (2021-02-10T17:13:21Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
本稿では,ペアワイズ比較データとランキングデータのための2サンプル試験を設計する。
私たちのテストでは、基本的に分布に関する仮定は必要ありません。
実世界のペアワイズ比較データに2サンプルテストを適用することで、人によって提供される評価とランキングは、実際は異なる分散である、と結論付ける。
論文 参考訳(メタデータ) (2020-06-21T20:51:09Z) - Double Generative Adversarial Networks for Conditional Independence
Testing [8.359770027722275]
高次元条件独立テストは統計学と機械学習の重要な構成要素である。
本稿では,GAN(Double Generative Adversarial Network)に基づく推論手法を提案する。
論文 参考訳(メタデータ) (2020-06-03T16:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。