論文の概要: An agent-based epidemics simulation to compare and explain screening and
vaccination prioritisation strategies
- arxiv url: http://arxiv.org/abs/2210.13089v1
- Date: Mon, 24 Oct 2022 10:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 12:02:03.140954
- Title: An agent-based epidemics simulation to compare and explain screening and
vaccination prioritisation strategies
- Title(参考訳): スクリーニングと予防接種優先戦略の比較と説明のためのエージェントベース流行シミュレーション
- Authors: Carole Adam and Helene Arduin
- Abstract要約: 本稿では,病原体動態のエージェントモデルについて述べる。
その目標は、流行の進化を予測することではなく、その基盤となるメカニズムを対話的に説明することである。
モデルは異なるシミュレーターでNetlogoで実装され、人々が実験できるようにオンラインで公開されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes an agent-based model of epidemics dynamics. This model
is willingly simplified, as its goal is not to predict the evolution of the
epidemics, but to explain the underlying mechanisms in an interactive way. This
model allows to compare screening prioritisation strategies, as well as
vaccination priority strategies, on a virtual population. The model is
implemented in Netlogo in different simulators, published online to let people
experiment with them. This paper reports on the model design, implementation,
and experimentations. In particular we have compared screening strategies to
evaluate the epidemics vs control it by quarantining infectious people; and we
have compared vaccinating older people with more risk factors, vs younger
people with more social contacts.
- Abstract(参考訳): 本稿では,病原体動態のエージェントモデルについて述べる。
このモデルは、流行の進化を予測するのではなく、その基盤となるメカニズムを対話的に説明することを目的としているため、積極的に単純化されている。
このモデルでは、仮想人口におけるスクリーニング優先戦略と予防接種優先戦略を比較することができる。
モデルは異なるシミュレーターでNetlogoで実装され、人々が実験できるようにオンラインで公開されている。
本稿では,モデル設計,実装,実験について報告する。
特に,感染率の高い高齢者に対して,感染率の高い高齢者のワクチン接種と,社会的接触度が高い若年者と比較した。
関連論文リスト
- Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Cooperating Graph Neural Networks with Deep Reinforcement Learning for
Vaccine Prioritization [0.0]
本研究は,供給制限時のパンデミックの全体負担を軽減するためのワクチンの優先順位付け戦略について検討する。
既存の方法では、サブグループ集団内の均一な振る舞いを仮定してマクロレベルまたは単純化されたマイクロレベルワクチンの分布を行う。
我々は,高次空間時間病進化システムのための最適なワクチン配置戦略を求めるために,新しい深層強化学習を開発した。
論文 参考訳(メタデータ) (2023-05-09T04:19:10Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
マルチアーム・バンディット・フレームワークを用いてワクチンのアロケーション戦略を評価する新しい手法を提案する。
$m$-top Exploringにより、アルゴリズムは最高のユーティリティを期待する$m$ポリシーを学ぶことができる。
ベルギーのCOVID-19流行を個人モデルSTRIDEを用いて検討し、予防接種方針のセットを学習する。
論文 参考訳(メタデータ) (2023-01-30T12:22:30Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Evaluating vaccine allocation strategies using simulation-assisted
causal modelling [7.9656669215132005]
パンデミックの早期にはワクチンの入手が制限され、異なる集団の優先順位付けが必要になる。
新型コロナウイルスのパンデミックに対する年齢依存型予防接種戦略を遡及的に評価するモデルを構築した。
我々は,2021年に実施したイスラエルのワクチン割当戦略を,先天的な優先順位付けや若年集団の優先順位付け,厳格なリスクランク付けアプローチといった対実的戦略と比較した。
論文 参考訳(メタデータ) (2022-12-14T14:24:17Z) - Multi-scale simulation of COVID-19 epidemics [0.0]
新型コロナウイルスの感染拡大が始まってから1年以上が経過している。
今後数週間にわたって広がる未来と、潜在的な政治的介入の影響を正確に予測することは難しい」と述べた。
現在の流行モデルは主に2つのアプローチに該当する: 分割モデル、人口を疫学クラスに分け、微分方程式の数学的解決に依存する。
論文 参考訳(メタデータ) (2021-12-02T12:34:11Z) - An Agent-Based Model of COVID-19 Diffusion to Plan and Evaluate
Intervention Policies [0.09236074230806579]
このモデルはイタリアのピエモンテの構造データを含んでいる。
このモデルは、エージェントの行動と相互作用の結果から生じる複雑な伝染病のダイナミクスの生成である。
論文 参考訳(メタデータ) (2021-08-19T19:23:17Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
我々は、インフルエンザとCOVID-19が共存する新しいシナリオに、歴史的疾患予測モデルを「操る」ことができる神経伝達学習アーキテクチャであるCALI-Netを提案する。
我々の実験は、現在のパンデミックに歴史的予測モデルを適用することに成功していることを示している。
論文 参考訳(メタデータ) (2020-09-23T22:35:43Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。