論文の概要: A simple probabilistic neural network for machine understanding
- arxiv url: http://arxiv.org/abs/2210.13179v4
- Date: Mon, 16 Oct 2023 08:30:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 06:37:22.296666
- Title: A simple probabilistic neural network for machine understanding
- Title(参考訳): 機械理解のための単純な確率的ニューラルネットワーク
- Authors: Rongrong Xie and Matteo Marsili
- Abstract要約: 本稿では,機械理解のためのモデルとして,確率的ニューラルネットワークと内部表現の固定化について論じる。
内部表現は、それが最大関係の原理と、どのように異なる特徴が組み合わされるかについての最大無知を満たすことを要求して導出する。
このアーキテクチャを持つ学習機械は、パラメータやデータの変化に対する表現の連続性など、多くの興味深い特性を享受している、と我々は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We discuss probabilistic neural networks with a fixed internal representation
as models for machine understanding. Here understanding is intended as mapping
data to an already existing representation which encodes an {\em a priori}
organisation of the feature space. We derive the internal representation by
requiring that it satisfies the principles of maximal relevance and of maximal
ignorance about how different features are combined. We show that, when hidden
units are binary variables, these two principles identify a unique model -- the
Hierarchical Feature Model (HFM) -- which is fully solvable and provides a
natural interpretation in terms of features. We argue that learning machines
with this architecture enjoy a number of interesting properties, like the
continuity of the representation with respect to changes in parameters and
data, the possibility to control the level of compression and the ability to
support functions that go beyond generalisation. We explore the behaviour of
the model with extensive numerical experiments and argue that models where the
internal representation is fixed reproduce a learning modality which is
qualitatively different from that of traditional models such as Restricted
Boltzmann Machines.
- Abstract(参考訳): 機械理解のためのモデルとして,確率的ニューラルネットワークと固定内部表現を議論する。
ここでの理解は、特徴空間の組織をエンコードする既存の表現にデータをマッピングすることを目的としています。
最大限の関連性の原則を満たし、どのように異なる特徴が組み合わされるかに関する最大限の無知を満たすことで、内部表現を導出する。
隠れた単位がバイナリ変数である場合、これら2つの原則は、完全可解であり、特徴の観点で自然な解釈を提供する階層的特徴モデル(hfm)というユニークなモデルを特定する。
このアーキテクチャを持つ学習機械は、パラメータやデータの変化に対する表現の連続性、圧縮レベルを制御する可能性、一般化を超えて機能をサポートする能力など、多くの興味深い特性を享受していると我々は主張する。
本研究では, 内部表現が固定されたモデルが, 制限ボルツマンマシンのような従来のモデルと定性的に異なる学習モダリティを再現することを議論する。
関連論文リスト
- Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
本稿では, ニューラルネットワークカーネル(NTK)に基づく理論的手法を提案し, そのメカニズムを解明する。
これらのモデルが勾配降下時の統計的特徴をどのように活用し、最終決定にどのように統合されるかを明らかにする。
自己注意モデルとCNNモデルはn-gramの学習の限界を示すが、乗算モデルはこの領域で優れていると考えられる。
論文 参考訳(メタデータ) (2023-10-25T04:22:40Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
機能的に等価な機能と呼ぶものの定義を提供します。
これらの特徴は特定の変換の下で等価な出力を生成する。
反復的特徴マージ(Iterative Feature Merging)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-10T16:27:12Z) - Discovering interpretable elastoplasticity models via the neural
polynomial method enabled symbolic regressions [0.0]
従来のニューラルネットワークの弾塑性モデルは、しばしば解釈可能性に欠けると見なされる。
本稿では,人間専門家が解釈可能な数学的モデルを返す2段階の機械学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T22:22:32Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
本稿では、構造化データセットにおける暗黙バイアスを定量化するファジィ認知マップモデルを提案する。
本稿では,ニューロンの飽和を防止する正規化様伝達関数を備えた新しい推論機構を提案する。
論文 参考訳(メタデータ) (2021-12-23T17:04:12Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - It's FLAN time! Summing feature-wise latent representations for
interpretability [0.0]
FLAN(Feature-wise Latent Additive Networks)と呼ばれる構造拘束型ニューラルネットワークの新たなクラスを提案する。
FLANは各入力機能を別々に処理し、それぞれに共通の潜在空間の表現を演算する。
これらの特徴的潜在表現は単純に要約され、集約された表現は予測に使用される。
論文 参考訳(メタデータ) (2021-06-18T12:19:33Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z) - Human-interpretable model explainability on high-dimensional data [8.574682463936007]
2つのモジュールからなる高次元データに対する人間解釈可能な説明可能性のためのフレームワークを提案する。
まず、データの生の次元性を減らし、人間の解釈可能性を確保するために、意味的に意味のある潜在表現を適用する。
第2に、モデルに依存しないこれらの潜在的特徴を扱うために、Shapleyパラダイムを適用し、理論的に制御され、計算的に抽出可能なモデル説明をもたらす。
論文 参考訳(メタデータ) (2020-10-14T20:06:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。