論文の概要: BoundED: Neural Boundary and Edge Detection in 3D Point Clouds via Local
Neighborhood Statistics
- arxiv url: http://arxiv.org/abs/2210.13305v1
- Date: Mon, 24 Oct 2022 14:49:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 21:09:11.507790
- Title: BoundED: Neural Boundary and Edge Detection in 3D Point Clouds via Local
Neighborhood Statistics
- Title(参考訳): 境界線:局所的近傍統計による3次元点雲のニューラル境界とエッジ検出
- Authors: Lukas Bode (1), Michael Weinmann (2) and Reinhard Klein (1) ((1)
University of Bonn, (2) Delft University of Technology)
- Abstract要約: 本稿では,1次および2次統計量を用いて,局所的近傍を記述する新しい特徴セットを,単純でコンパクトな分類ネットワークの入力として利用する。
この機能の埋め込みを活用することで、我々のアルゴリズムは、品質と処理時間の点で最先端の技術より優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Extracting high-level structural information from 3D point clouds is
challenging but essential for tasks like urban planning or autonomous driving
requiring an advanced understanding of the scene at hand. Existing approaches
are still not able to produce high-quality results consistently while being
fast enough to be deployed in scenarios requiring interactivity. We propose to
utilize a novel set of features describing the local neighborhood on a
per-point basis via first and second order statistics as input for a simple and
compact classification network to distinguish between non-edge, sharp-edge, and
boundary points in the given data. Leveraging this feature embedding enables
our algorithm to outperform the state-of-the-art techniques in terms of quality
and processing time.
- Abstract(参考訳): 3Dポイントクラウドから高レベルの構造情報を抽出することは難しいが、都市計画や自動運転といったタスクには、現場の高度な理解を必要とする。
既存のアプローチでは、対話性を必要とするシナリオにデプロイできるほど高速でありながら、高品質な結果が一貫して得られない。
そこで本研究では,一階と二階の統計情報を用いて,与えられたデータ中の非端点,鋭端点,境界点を識別する,単純でコンパクトな分類ネットワークの入力として,局所的な近傍を記述する新しい特徴セットを提案する。
この機能を組み込むことで、アルゴリズムは品質と処理時間の観点から最先端の技術を上回ることができる。
関連論文リスト
- Point Tree Transformer for Point Cloud Registration [33.00645881490638]
ポイントクラウド登録は、コンピュータビジョンとロボティクスの分野における基本的なタスクである。
本稿では,局所的特徴とグローバルな特徴を効率的に抽出する,ポイントクラウド登録のためのトランスフォーマーベースの新しいアプローチを提案する。
本手法は最先端の手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2024-06-25T13:14:26Z) - FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud [7.711666704468952]
点雲を用いたトラバーサビリティ評価の問題に対処する。
本稿では,垂直に配置された点雲から特徴を捉えるために PointNet を利用した柱状特徴抽出モジュールを提案する。
次に、LIDAR点雲の密度問題に適切に対応できる多フレーム情報を融合する新しい時間的アテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-06-24T12:01:55Z) - Fast and Simple Explainability for Point Cloud Networks [4.013156524547072]
本稿では,ポイントクラウドデータのための高速で簡単なAI(XAI)手法を提案する。
トレーニングされたネットワークダウンストリームタスクに関して、ポイントワイズの重要性を計算します。
論文 参考訳(メタデータ) (2024-03-12T14:51:23Z) - Generalized Label-Efficient 3D Scene Parsing via Hierarchical Feature
Aligned Pre-Training and Region-Aware Fine-tuning [55.517000360348725]
本研究は,ラベル付きシーンが極めて限定された場合の3次元シーン理解のためのフレームワークを提案する。
事前学習された視覚言語モデルから新しいカテゴリーの知識を抽出するために,階層的特徴整合型事前学習と知識蒸留戦略を提案する。
室内と屋外の両方で実験を行ったところ、データ効率のよい学習とオープンワールドの複数ショット学習の両方において、我々のアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-12-01T15:47:04Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
Weakly-supervised framework for Point cloud Recognitionを紹介する。
We show that WyPR can detected and segment objects in point cloud data without access any space labels at training time。
論文 参考訳(メタデータ) (2021-05-13T17:58:07Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
現実世界の複雑な環境を直感的に捉えることができますが、3Dデータの生の性質のため、機械認識にとって非常に困難です。
我々は、現実に収集された大規模クラウドデータに対して、重要な視覚的タスク、セマンティックセグメンテーションに集中する。
3つのベンチマークで最先端のネットワークと比較することにより,ネットワークの有効性を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:13:20Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
都市景観のロバストなセマンティックセマンティックセグメンテーションのためのリアルタイムDCNNに基づく高速DCNN手法を提案する。
提案手法は, 51.0 fps と 39.3 fps の推論速度で, 平均 73.6% と平均 68.0% (mIoU) の精度を実現する。
論文 参考訳(メタデータ) (2020-03-11T08:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。