論文の概要: Point Tree Transformer for Point Cloud Registration
- arxiv url: http://arxiv.org/abs/2406.17530v1
- Date: Tue, 25 Jun 2024 13:14:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:20:18.397671
- Title: Point Tree Transformer for Point Cloud Registration
- Title(参考訳): ポイントクラウド登録のためのポイントツリー変換器
- Authors: Meiling Wang, Guangyan Chen, Yi Yang, Li Yuan, Yufeng Yue,
- Abstract要約: ポイントクラウド登録は、コンピュータビジョンとロボティクスの分野における基本的なタスクである。
本稿では,局所的特徴とグローバルな特徴を効率的に抽出する,ポイントクラウド登録のためのトランスフォーマーベースの新しいアプローチを提案する。
本手法は最先端の手法よりも優れた性能を実現する。
- 参考スコア(独自算出の注目度): 33.00645881490638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent developments in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanism utilized in these methods often integrates many low-relevance points, thereby struggling to prioritize its attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism, which follows the tree structure to facilitate the progressive convergence of attended regions towards salient points. Specifically, each tree layer selectively identifies a subset of key points with the highest attention scores. Subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, PTA empowers the model to concentrate on crucial local structures and derive detailed local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method achieves superior performance over the state-of-the-art methods.
- Abstract(参考訳): ポイントクラウド登録は、コンピュータビジョンとロボティクスの分野における基本的なタスクである。
変圧器を用いた手法の最近の進歩は、この領域における性能の向上を実証している。
しかし、これらの手法で使用される標準的な注意機構は、しばしば多くの低関連点を統合し、少ないが意味のある点に注意重みを優先順位付けるのに苦労する。
この非効率さは限定的な局所構造モデリング能力と二次計算複雑性をもたらす。
これらの制約を克服するために,点木変換器 (PTT) を提案する。点木変換器は,線形計算複雑性を維持しながら局所的および大域的特徴を効率的に抽出する,点クラウド登録のための新しい変換器ベースのアプローチである。
PTTは、点雲から粗雑な方法で階層的な特徴木を構築し、新しくPTA(Point Tree Attention)機構を導入する。
具体的には、各木層は、注目スコアが最も高いキーポイントのサブセットを選択的に識別する。
その後のレイヤは、選択された点集合の育点から派生した、重要な関連性のある領域に注目する。
特徴抽出プロセスには、高レベルの意味情報をキャプチャする粗い点特徴も組み込まれ、局所構造モデリングやマルチスケール情報のプログレッシブな統合が容易になる。
その結果、PTAはモデルに重要な局所構造に集中させ、線形計算複雑性を維持しながら詳細な局所情報を導出する権限を与える。
3DMatch, ModelNet40 および KITTI データセットを用いて行った実験により,本手法が最先端手法よりも優れた性能を実現することを示す。
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - pCTFusion: Point Convolution-Transformer Fusion with Semantic Aware Loss
for Outdoor LiDAR Point Cloud Segmentation [8.24822602555667]
本研究では,カーネルベースの畳み込みと自己保持機構を組み合わせた新しいアーキテクチャpCTFusionを提案する。
提案アーキテクチャでは,エンコーダブロックの階層的位置に基づいて,ローカルとグローバルの2種類の自己保持機構を採用している。
結果は特に、クラス不均衡、スペースの欠如、隣り合わせの機能符号化によってしばしば誤って分類される、マイナーなクラスを奨励している。
論文 参考訳(メタデータ) (2023-07-27T11:12:48Z) - Self-positioning Point-based Transformer for Point Cloud Understanding [18.394318824968263]
セルフポジショニングポイントベースのトランスフォーマー(SPoTr)は、局所的およびグローバルな形状のコンテキストを複雑さを減らしてキャプチャするように設計されている。
SPoTrは、ScanObjectNNを用いた形状分類における以前の最良のモデルよりも精度が2.6%向上している。
論文 参考訳(メタデータ) (2023-03-29T04:27:11Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
CpT: Convolutional Point Transformer - 3Dポイントクラウドデータの非構造化の性質を扱うための新しいディープラーニングアーキテクチャ。
CpTは、既存の注目ベースのConvolutions Neural Networksと、以前の3Dポイントクラウド処理トランスフォーマーの改善である。
我々のモデルは、既存の最先端のアプローチと比較して、様々なポイントクラウド処理タスクの効果的なバックボーンとして機能する。
論文 参考訳(メタデータ) (2021-11-21T17:45:55Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
本稿では,物体検出におけるトップダウンモデリングの役割を再考する。
密度の高いトップダウンフロー(DNTDF)ベースのフレームワークを設計する。
DNTDFのすべての段階において、高いレベルの特徴はプログレッシブ圧縮ショートカットパス(PCSP)を介して読み込まれる。
論文 参考訳(メタデータ) (2021-02-18T03:14:02Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。