Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
- URL: http://arxiv.org/abs/2210.13512v4
- Date: Mon, 04 Nov 2024 20:14:50 GMT
- Title: Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
- Authors: Muthu Chidambaram, Xiang Wang, Chenwei Wu, Rong Ge,
- Abstract summary: Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels.
We focus on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly.
Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class.
- Score: 14.37428912254029
- License:
- Abstract: Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have multiple features.
Related papers
- Efficient and Long-Tailed Generalization for Pre-trained Vision-Language Model [43.738677778740325]
We propose a novel framework to achieve efficient and long-tailed generalization, which can be termed as Candle.
Candle achieves state-of-the-art performance over extensive experiments on 11 diverse datasets.
arXiv Detail & Related papers (2024-06-18T14:07:13Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - The Benefits of Mixup for Feature Learning [117.93273337740442]
We first show that Mixup using different linear parameters for features and labels can still achieve similar performance to standard Mixup.
We consider a feature-noise data model and show that Mixup training can effectively learn the rare features from its mixture with the common features.
In contrast, standard training can only learn the common features but fails to learn the rare features, thus suffering from bad performance.
arXiv Detail & Related papers (2023-03-15T08:11:47Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes.
We show that the few-shot error of the learned feature map on new classes is small in case of class-feature-variability collapse.
arXiv Detail & Related papers (2022-12-23T18:46:05Z) - Compositional Fine-Grained Low-Shot Learning [58.53111180904687]
We develop a novel compositional generative model for zero- and few-shot learning to recognize fine-grained classes with a few or no training samples.
We propose a feature composition framework that learns to extract attribute features from training samples and combines them to construct fine-grained features for rare and unseen classes.
arXiv Detail & Related papers (2021-05-21T16:18:24Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Generative Multi-Label Zero-Shot Learning [136.17594611722285]
Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training.
Our work is the first to tackle the problem of multi-label feature in the (generalized) zero-shot setting.
Our cross-level fusion-based generative approach outperforms the state-of-the-art on all three datasets.
arXiv Detail & Related papers (2021-01-27T18:56:46Z) - Mixture-based Feature Space Learning for Few-shot Image Classification [6.574517227976925]
We propose to model base classes with mixture models by simultaneously training the feature extractor and learning the mixture model parameters in an online manner.
Results in a richer and more discriminative feature space which can be employed to classify novel examples from very few samples.
arXiv Detail & Related papers (2020-11-24T03:16:27Z) - PK-GCN: Prior Knowledge Assisted Image Classification using Graph
Convolution Networks [3.4129083593356433]
Similarity between classes can influence the performance of classification.
We propose a method that incorporates class similarity knowledge into convolutional neural networks models.
Experimental results show that our model can improve classification accuracy, especially when the amount of available data is small.
arXiv Detail & Related papers (2020-09-24T18:31:35Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
Object frequency in the real world often follows a power law, leading to a mismatch between datasets with long-tailed class distributions.
We propose to augment the classic class-balanced learning by explicitly estimating the differences between the class-conditioned distributions with a meta-learning approach.
arXiv Detail & Related papers (2020-03-24T11:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.