論文の概要: Classification of Misinformation in New Articles using Natural Language
Processing and a Recurrent Neural Network
- arxiv url: http://arxiv.org/abs/2210.13534v1
- Date: Mon, 24 Oct 2022 18:37:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 13:29:13.842368
- Title: Classification of Misinformation in New Articles using Natural Language
Processing and a Recurrent Neural Network
- Title(参考訳): 自然言語処理とリカレントニューラルネットワークを用いた新論文における誤情報の分類
- Authors: Brendan Cunha and Lydia Manikonda
- Abstract要約: 本稿では,Long Short Term Memory Recurrent Neural Networkを用いて,ニュース記事の誤情報分類について検討する。
トランプ氏やロバート・ミューラー特別検察官、フィファ・ワールドカップ(W杯)、ロシアについて書いた記者が満載だった。
これは、このモデルが英語以外の言語や不完全、あるいは断片化された記事を含む記事に基づいて訓練されたためであると考えている。
- 参考スコア(独自算出の注目度): 1.4467794332678536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper seeks to address the classification of misinformation in news
articles using a Long Short Term Memory Recurrent Neural Network. Articles were
taken from 2018; a year that was filled with reporters writing about President
Donald Trump, Special Counsel Robert Mueller, the Fifa World Cup, and Russia.
The model presented successfully classifies these articles with an accuracy
score of 0.779944. We consider this to be successful because the model was
trained on articles that included languages other than English as well as
incomplete, or fragmented, articles.
- Abstract(参考訳): 本稿では,Long Short Term Memory Recurrent Neural Networkを用いて,ニュース記事の誤情報分類について検討する。
2018年の記事は、ドナルド・トランプ米大統領、ロバート・ムラー特別検察官、fifaワールドカップ、ロシアについて書いた記者で埋め尽くされた。
提示されたモデルは、これらの項目を精度スコア0.779944で分類する。
これは、このモデルが英語以外の言語や不完全、あるいは断片化された記事を含む記事に基づいて訓練されたためであると考えている。
関連論文リスト
- Newswire: A Large-Scale Structured Database of a Century of Historical News [3.562368079040469]
歴史家は、ニュースワイヤーが国家のアイデンティティを創り、世界の理解を共有する上で重要な役割を果たしたと主張している。
数千の地方紙から数百テラバイトの原画像スキャンに、カスタマイズされたディープラーニングパイプラインを適用することで、そのようなアーカイブを再構築する。
結果として得られたデータセットには1878年から1977年の間に書かれた270万のアメリカ独自のパブリックドメインのニュースワイヤー記事が含まれている。
論文 参考訳(メタデータ) (2024-06-13T16:20:05Z) - TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu [4.272315504476224]
関連性に基づく見出し分類は、関連する見出しを生成するタスクを大いに助ける。
本稿では,TeClassについて紹介する。
ROUGE-Lスコアの約5ポイント向上を示した。
論文 参考訳(メタデータ) (2024-04-17T13:07:56Z) - MegaWika: Millions of reports and their sources across 50 diverse
languages [74.3909725023673]
MegaWikaは、50の言語で1300万のWikipedia記事と、7100万の参考資料で構成されている。
我々は、このデータセットを無数のアプリケーションに処理し、非英語の記事を言語間アプリケーションに翻訳する。
MegaWikaは、文レベルのレポート生成のための最大のリソースであり、マルチランガルである唯一のレポート生成データセットである。
論文 参考訳(メタデータ) (2023-07-13T20:04:02Z) - News Category Dataset [1.7513645771137178]
HuffPostから入手した2012年から2018年までの約200万のニュースの見出しを含むNews Categoryデータセットを提示する。
本稿では,データセットから新たな知見を導き,データセットの既存および潜在的応用について述べる。
論文 参考訳(メタデータ) (2022-09-23T06:13:16Z) - An Automated News Bias Classifier Using Caenorhabditis Elegans Inspired
Recursive Feedback Network Architecture [0.0]
記事にバイアス分類を割り当てる際の人間レベルの精度を実現するネットワークアーキテクチャを提案する。
このモデルは、AllSides.comから取り除かれた10以上の記事に基づいて訓練され、政治的偏見を示すようにラベル付けされている。
論文 参考訳(メタデータ) (2022-07-26T08:26:26Z) - NewsEdits: A News Article Revision Dataset and a Document-Level
Reasoning Challenge [122.37011526554403]
NewsEditsは、最初に公開されたニュースリビジョン履歴のデータセットである。
120万記事と、22以上の英語とフランス語の新聞ソースから460万バージョンを収録している。
論文 参考訳(メタデータ) (2022-06-14T18:47:13Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - No News is Good News: A Critique of the One Billion Word Benchmark [4.396860522241306]
10億ワードベンチマークは、WMT 2011 News Crawlから派生したデータセットである。
毎年分割されたCommon Crawlのウェブスクラップにのみモデルをトレーニングし、分散シフトによる時間経過とともに、このタスクに悪影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2021-10-25T02:41:27Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
公開されている言語モデルは、入力されたオリジナルニュースに基づいてバイアスのあるニュースコンテンツを確実に生成できることを示す。
また、制御可能なテキスト生成を用いて、多数の高品質な偏りのあるニュース記事を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-05T16:55:39Z) - LTIatCMU at SemEval-2020 Task 11: Incorporating Multi-Level Features for
Multi-Granular Propaganda Span Identification [70.1903083747775]
本稿では,新聞記事におけるプロパガンダ・スパン識別の課題について述べる。
本稿では,BERT-BiLSTMに基づくプロパガンダ分類モデルを提案する。
論文 参考訳(メタデータ) (2020-08-11T16:14:47Z) - Soft Gazetteers for Low-Resource Named Entity Recognition [78.00856159473393]
本稿では、英語知識ベースからユビキタスに利用可能な情報をニューラル名付きエンティティ認識モデルに組み込む「ソフトガゼッタ」を提案する。
4つの低リソース言語に対する実験により,F1得点の4点の平均的改善が示された。
論文 参考訳(メタデータ) (2020-05-04T21:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。