Multi-party quantum private comparison of size relationship with two
third parties based on d-dimensional Bell states
- URL: http://arxiv.org/abs/2210.13688v1
- Date: Tue, 25 Oct 2022 01:15:04 GMT
- Title: Multi-party quantum private comparison of size relationship with two
third parties based on d-dimensional Bell states
- Authors: Jiang-Yuan Lian, Xia Li, Tian-Yu Ye
- Abstract summary: The proposed MQPC protocol is adaptive forthe case that users want to compare the size relationship of their private integers under the control of two supervisors.
The proposed MQPC protocol can be used in the strange user environment, because there are not any communication and pre-shared key between each pair of users.
- Score: 5.12433745864982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we put forward a multi-party quantum private comparison(MQPC)
protocol with two semi-honest third parties (TPs) by adopting d-dimensional
Bell states, which can judge the size relationship of private integers from
more than two users within one execution of protocol.Each TP is permitted to
misbehave on her own but cannot collude with others. In the proposed MQPC
protocol, TPs are only required to apply d-dimensional single-particle
measurements rather than d-dimensional Bell state measurements. There are no
quantum entanglement swapping and unitary operations required in the proposed
MQPC protocol. The security analysis validates that the proposed MQPC protocol
can resist both the outside attacks and the participant attacks.The proposed
MQPC protocol is adaptive forthe case that users want to compare the size
relationship of their private integers under the control of two supervisors.
Furthermore, the proposed MQPC protocol can be used in the strange user
environment, because there are not any communication and pre-shared key between
each pair of users.
Related papers
- Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Quantum Two-Way Communication Protocol Beyond Superdense Coding [36.25599253958745]
We introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs.
The proposed protocol gives a 50% increase in both data rate and energy efficiency compared to the classical protocol.
arXiv Detail & Related papers (2023-09-06T08:48:07Z) - A Feasible Semi-quantum Private Comparison Based on Entanglement
Swapping of Bell States [5.548873288570182]
We propose a feasible semi-quantum private comparison protocol based on entanglement swapping of Bell states.
Security analysis shows that our protocol is resilient to both external and internal attacks.
Our proposed approach showcases the potential applications of entanglement swapping in the field of semi-quantum cryptography.
arXiv Detail & Related papers (2023-05-12T13:28:44Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - A novel multi-party semiquantum private comparison protocol of size
relationship with d-dimensional single-particle states [0.0]
This protocol requires the help of one quantum third party (TP) and one classical TP.
Neither quantum entanglement swapping nor unitary operations are necessary for implementing this protocol.
arXiv Detail & Related papers (2022-08-30T16:35:55Z) - Towards Semantic Communication Protocols: A Probabilistic Logic
Perspective [69.68769942563812]
We propose a semantic protocol model (SPM) constructed by transforming an NPM into an interpretable symbolic graph written in the probabilistic logic programming language (ProbLog)
By leveraging its interpretability and memory-efficiency, we demonstrate several applications such as SPM reconfiguration for collision-avoidance.
arXiv Detail & Related papers (2022-07-08T14:19:36Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Measure-resend semi-quantum private comparison without entanglement [0.0]
Our protocol allows two classical users to compare the equality of their private secrets under the help of a quantum third party.
The quantum TP is semi-honest in the sense that he is allowed to misbehave on his own but cannot conspire with either of users.
arXiv Detail & Related papers (2022-05-13T00:43:05Z) - Quantum private comparison via cavity QED [0.0]
The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource.
The qubit efficiency of the proposed protocol is as high as 50%.
arXiv Detail & Related papers (2022-05-09T02:37:06Z) - Semiquantum Private Comparison of Size Relationship Based on d-level
Single-Particle States [3.312385039704987]
We propose a novel semiquantum private comparison protocol of size relationship based on d-level single-particle states.
This protocol takes advantage over it on the aspects of initial quantum resource, TP's measurement operations and TP's knowledge about the comparison results.
arXiv Detail & Related papers (2022-01-13T04:30:09Z) - Counterfactual Concealed Telecomputation [22.577469136318836]
We devise a distributed blind quantum computation protocol to perform a universal two-qubit controlled unitary operation.
It is shown that the protocol is valid for general input states and that single-qubit unitary teleportation is a special case of CCT.
The protocol becomes deterministic with simplified circuit implementation if the initial composite state of Alice and Bob is a Bell-type state.
arXiv Detail & Related papers (2020-12-09T10:07:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.