Structure-based Drug Design with Equivariant Diffusion Models
- URL: http://arxiv.org/abs/2210.13695v3
- Date: Mon, 23 Sep 2024 19:31:01 GMT
- Title: Structure-based Drug Design with Equivariant Diffusion Models
- Authors: Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du, Carla Gomes, Tom Blundell, Pietro Lio, Max Welling, Michael Bronstein, Bruno Correia,
- Abstract summary: We present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel conditioned on protein pockets.
Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively.
These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods.
- Score: 40.73626627266543
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Structure-based drug design (SBDD) aims to design small-molecule ligands that bind with high affinity and specificity to pre-determined protein targets. Generative SBDD methods leverage structural data of drugs in complex with their protein targets to propose new drug candidates. These approaches typically place one atom at a time in an autoregressive fashion using the binding pocket as well as previously added ligand atoms as context in each step. Recently a surge of diffusion generative models has entered this domain which hold promise to capture the statistical properties of natural ligands more faithfully. However, most existing methods focus exclusively on bottom-up de novo design of compounds or tackle other drug development challenges with task-specific models. The latter requires curation of suitable datasets, careful engineering of the models and retraining from scratch for each task. Here we show how a single pre-trained diffusion model can be applied to a broader range of problems, such as off-the-shelf property optimization, explicit negative design, and partial molecular design with inpainting. We formulate SBDD as a 3D-conditional generation problem and present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel ligands conditioned on protein pockets. Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively. Furthermore, we show how additional constraints can be used to improve the generated drug candidates according to a variety of computational metrics. These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods, and are able to incorporate additional design objectives and constraints changing nothing but the sampling strategy.
Related papers
- Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Navigating the Design Space of Equivariant Diffusion-Based Generative
Models for De Novo 3D Molecule Generation [1.3124513975412255]
Deep generative diffusion models are a promising avenue for 3D de novo molecular design in materials science and drug discovery.
We explore the design space of E(3)-equivariant diffusion models, focusing on previously unexplored areas.
We present the EQGAT-diff model, which consistently outperforms established models for the QM9 and GEOM-Drugs datasets.
arXiv Detail & Related papers (2023-09-29T14:53:05Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
Ligand molecule conformation generation is a critical challenge in drug discovery.
Deep learning models have been developed to tackle this problem.
These models often generate conformations that lack meaningful structure and randomness due to the absence of essential side information.
arXiv Detail & Related papers (2023-08-02T09:56:47Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and
Affinity Prediction [9.67574543046801]
The inclusion of 3D structures during targeted drug design shows superior performance to other target-free models.
We develop a 3D equivariant diffusion model to solve the above challenges.
Our model could generate molecules with more realistic 3D structures and better affinities towards the protein targets, and improve binding affinity ranking and prediction without retraining.
arXiv Detail & Related papers (2023-03-06T23:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.