論文の概要: S3E: A Large-scale Multimodal Dataset for Collaborative SLAM
- arxiv url: http://arxiv.org/abs/2210.13723v4
- Date: Sat, 16 Sep 2023 05:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 01:21:17.140737
- Title: S3E: A Large-scale Multimodal Dataset for Collaborative SLAM
- Title(参考訳): S3E:コラボレーションSLAMのための大規模マルチモーダルデータセット
- Authors: Dapeng Feng, Yuhua Qi, Shipeng Zhong, Zhiqiang Chen, Yudu Jiao, Qiming
Chen, Tao Jiang, Hongbo Chen
- Abstract要約: 本研究では,無人地上車両群が収集した大規模マルチモーダルデータセットであるS3Eを提案する。
S3Eは、7つの屋外シーケンスと5つの屋内シーケンスで構成されており、200秒毎に、時間的同期と空間的校正された高周波数IMU、高品質ステレオカメラ、360度LiDARデータで構成されている。
重要なことは、データセットのサイズ、シーンの可変性、複雑さに関するこれまでの試みを超えています。
- 参考スコア(独自算出の注目度): 7.9003392680427345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advanced request to employ a team of robots to perform a task
collaboratively, the research community has become increasingly interested in
collaborative simultaneous localization and mapping. Unfortunately, existing
datasets are limited in the scale and variation of the collaborative
trajectories, even though generalization between inter-trajectories among
different agents is crucial to the overall viability of collaborative tasks. To
help align the research community's contributions with realistic multiagent
ordinated SLAM problems, we propose S3E, a large-scale multimodal dataset
captured by a fleet of unmanned ground vehicles along four designed
collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor
sequences that each exceed 200 seconds, consisting of well temporal
synchronized and spatial calibrated high-frequency IMU, high-quality stereo
camera, and 360 degree LiDAR data. Crucially, our effort exceeds previous
attempts regarding dataset size, scene variability, and complexity. It has 4x
as much average recording time as the pioneering EuRoC dataset. We also provide
careful dataset analysis as well as baselines for collaborative SLAM and single
counterparts. Data and more up-to-date details are found at
https://github.com/PengYu-Team/S3E.
- Abstract(参考訳): タスクを協調的に実行するロボットチームを採用するという高度な要求により、研究コミュニティは協調的なローカライゼーションとマッピングにますます関心を寄せている。
残念なことに、既存のデータセットは、異なるエージェント間のトラジェクタ間の一般化がコラボレーションタスクの全体的な実行可能性に不可欠であるにもかかわらず、協調的トラジェクタの規模とバリエーションに制限がある。
現実的なマルチエージェント・オーダライテッドSLAM問題に対する研究コミュニティのコントリビューションの整合を支援するため、S3Eは、無人地上車両群が4つの設計された協調軌道パラダイムに沿って捉えた大規模マルチモーダルデータセットである。
S3Eは、7つの屋外シーケンスと5つの屋内シーケンスで構成され、それぞれ200秒を超える。
重要なことは、データセットのサイズ、シーンの可変性、複雑さに関するこれまでの試みを超えています。
EuRoCデータセットのパイオニアであるEuRoCの4倍の平均記録時間を持つ。
また、注意深いデータセット分析や、コラボレーションSLAMと単一データセットのベースラインも提供しています。
データと最新の詳細はhttps://github.com/PengYu-Team/S3E.comで確認できる。
関連論文リスト
- Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Detは3D検出のための統一的で普遍的なマルチデータセットトレーニングのためのフレームワークである。
マルチデータセット3D検出のためのマルチステージプロンプトモジュールを提案する。
ゼロショットクロスデータセット転送の結果は,提案手法の一般化能力を検証する。
論文 参考訳(メタデータ) (2024-09-30T17:57:50Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data [1.4053129774629076]
M3LEOはマルチモーダルでマルチラベルの地球観測データセットである。
6つの地理的領域から約17M 4x4 kmのデータチップにまたがる。
論文 参考訳(メタデータ) (2024-06-06T16:30:41Z) - Multimodal Collaboration Networks for Geospatial Vehicle Detection in Dense, Occluded, and Large-Scale Events [29.86323896541765]
大規模災害では, 災害現場の物体検出能力に頼って, 最適な救助経路の計画を立てる。
既存の手法は、通常RGBのモダリティに基づいており、混み合った環境で同じ色やテクスチャでターゲットを区別するのに苦労している。
密集・隠蔽車検出のためのマルチモーダル協調ネットワーク MuDet を提案する。
論文 参考訳(メタデータ) (2024-05-14T00:51:15Z) - Multi-Space Alignments Towards Universal LiDAR Segmentation [50.992103482269016]
M3Netはマルチタスク、マルチデータセット、マルチモダリティのLiDARセグメンテーションを実現するための1対1のフレームワークである。
まず、さまざまなシーンから異なるタイプのセンサーによって取得された大規模な運転データセットを組み合わせる。
次に、トレーニング中にデータ、特徴、ラベル空間という3つの空間でアライメントを行います。
論文 参考訳(メタデータ) (2024-05-02T17:59:57Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - SSCBench: A Large-Scale 3D Semantic Scene Completion Benchmark for Autonomous Driving [87.8761593366609]
SSCBenchは、広く使用されている自動車データセットのシーンを統合するベンチマークである。
我々は、単眼、三眼、クラウド入力を用いて、性能ギャップを評価するモデルをベンチマークする。
クロスドメインの一般化テストを簡単にするために、さまざまなデータセットにまたがったセマンティックラベルを統一しています。
論文 参考訳(メタデータ) (2023-06-15T09:56:33Z) - Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection [34.2238222373818]
現在の3Dオブジェクト検出モデルは、単一のデータセット固有のトレーニングとテストのパラダイムに従っている。
本稿では,複数のデータセットから統合された3次元検出器を訓練する作業について検討する。
単純なデータレベルの修正操作と設計された意味レベルの結合・再結合モジュールを利用するUni3Dを提案する。
論文 参考訳(メタデータ) (2023-03-13T05:54:13Z) - Multimodal Remote Sensing Benchmark Datasets for Land Cover
Classification with A Shared and Specific Feature Learning Model [36.993630058695345]
マルチモーダルRSデータをモダリティ共有およびモダリティ固有成分に分解するための共有特徴学習(S2FL)モデルを提案する。
マルチモーダルベースラインと新たに提案されたS2FLモデルを評価するために、3つのマルチモーダルRSベンチマークデータセット、すなわちHouston2013 -- hyperspectral and multispectral data, Berlin -- hyperspectral and synthetic Aperture radar (SAR) data, Augsburg -- hyperspectral, SAR, digital surface model (DSM) dataがリリースされ、土地被覆分類に使用される。
論文 参考訳(メタデータ) (2021-05-21T08:14:21Z) - RELLIS-3D Dataset: Data, Benchmarks and Analysis [16.803548871633957]
RELLIS-3Dはオフロード環境で収集されたマルチモーダルデータセットである。
データはテキサスA&M大学のRellis Campusで収集されました。
論文 参考訳(メタデータ) (2020-11-17T18:28:01Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。