論文の概要: A deep learning approach for brain tumor detection using magnetic
resonance imaging
- arxiv url: http://arxiv.org/abs/2210.13882v1
- Date: Tue, 25 Oct 2022 10:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 14:22:03.737101
- Title: A deep learning approach for brain tumor detection using magnetic
resonance imaging
- Title(参考訳): 磁気共鳴画像を用いた脳腫瘍検出のための深層学習手法
- Authors: Al-Akhir Nayan, Ahamad Nokib Mozumder, Md. Rakibul Haque, Fahim
Hossain Sifat, Khan Raqib Mahmud, Abul Kalam Al Azad, Muhammad Golam Kibria
- Abstract要約: 脳腫瘍は、子供や成人で最も危険な疾患の1つと考えられている。
MRI画像から脳腫瘍を検出するための畳み込みニューラルネットワーク(CNN)に基づく図解が提案されている。
提案したモデルでは98.6%の精度と97.8%の精度でクロスエントロピー速度が低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growth of abnormal cells in the brain's tissue causes brain tumors. Brain
tumors are considered one of the most dangerous disorders in children and
adults. It develops quickly, and the patient's survival prospects are slim if
not appropriately treated. Proper treatment planning and precise diagnoses are
essential to improving a patient's life expectancy. Brain tumors are mainly
diagnosed using magnetic resonance imaging (MRI). As part of a convolution
neural network (CNN)-based illustration, an architecture containing five
convolution layers, five max-pooling layers, a Flatten layer, and two dense
layers has been proposed for detecting brain tumors from MRI images. The
proposed model includes an automatic feature extractor, modified hidden layer
architecture, and activation function. Several test cases were performed, and
the proposed model achieved 98.6% accuracy and 97.8% precision score with a low
cross-entropy rate. Compared with other approaches such as adjacent feature
propagation network (AFPNet), mask region-based CNN (mask RCNN), YOLOv5, and
Fourier CNN (FCNN), the proposed model has performed better in detecting brain
tumors.
- Abstract(参考訳): 脳組織における異常な細胞の増殖は、脳腫瘍を引き起こす。
脳腫瘍は、子供や成人で最も危険な疾患の1つである。
急速に発達し、患者が適切に治療を受けなければ生存確率は低くなる。
適切な治療計画と正確な診断は、患者の寿命を改善するために不可欠である。
脳腫瘍は主にMRI(MRI)を用いて診断される。
畳み込みニューラルネットワーク(CNN)に基づく図示の一部として、MRI画像から脳腫瘍を検出するために、5つの畳み込み層、5つの最大プール層、フラットテン層、2つの密集層を含むアーキテクチャが提案されている。
提案モデルには,自動特徴抽出器,隠蔽層アーキテクチャ,アクティベーション機能が含まれる。
いくつかのテストケースが実施され、提案されたモデルは98.6%の精度と97.8%の精度でクロスエントロピー速度が低い。
隣接する特徴伝達ネットワーク(AFPNet)、マスク領域ベースのCNN(マスクRCNN)、YOLOv5、Fourier CNN(FCNN)などの他のアプローチと比較して、提案モデルは脳腫瘍の検出において優れた性能を示した。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - An Integrated Deep Learning Framework for Effective Brain Tumor Localization, Segmentation, and Classification from Magnetic Resonance Images [0.0]
脳内の腫瘍は、様々な種類の脳細胞から生じる脳組織内の異常な細胞増殖によって生じる。
本研究は,MRI画像からのグリオーマの局在,セグメンテーション,分類のためのDLフレームワークを提案する。
提案モデルでは,早期診断を可能とし,患者に対してより正確な治療オプションを提供することで,医療用AIの進歩を期待できる結果が得られた。
論文 参考訳(メタデータ) (2024-09-25T18:38:57Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Brain Tumor MRI Classification using a Novel Deep Residual and Regional
CNN [0.0]
Res-BRNet Convolutional Neural Network (CNN) は脳腫瘍(磁気共鳴イメージング)MRIの診断に有用である。
開発されたRes-BRNetの効率は、KaggleとFigshareから収集された標準データセットに基づいて評価される。
実験により、Res-BRNetは標準CNNモデルよりも優れ、優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-29T20:14:13Z) - Detection and Classification of Brain tumors Using Deep Convolutional
Neural Networks [0.0]
脳の腫瘍はがんなので致命的です。
脳腫瘍の大きさや位置が異なるため、その性質を理解することは困難である。
本論文は,通常の画素と異常画素を区別し,精度良く分類することを目的とする。
論文 参考訳(メタデータ) (2022-08-28T18:24:22Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
この研究の目的は、健康な患者と不健康な患者を区別するために脳MRI画像を使用することである。
深層学習技術は近年、脳腫瘍をより正確に、堅牢に診断する方法として関心を喚起している。
論文 参考訳(メタデータ) (2022-04-26T13:20:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Deep Convolutional Neural Networks Model-based Brain Tumor Detection in
Brain MRI Images [0.0]
我々の研究は、MR画像から脳腫瘍を診断するためのディープ畳み込みニューラルネットワーク(DCNN)を実装することである。
本モデルでは, 腫瘍でMR像を抽出し, 全体的な精度は96%であった。
論文 参考訳(メタデータ) (2020-10-03T07:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。