Is the Quantum State Real in the Hilbert Space Formulation?
- URL: http://arxiv.org/abs/2210.13973v1
- Date: Fri, 21 Oct 2022 13:18:05 GMT
- Title: Is the Quantum State Real in the Hilbert Space Formulation?
- Authors: Mani L. Bhaumik
- Abstract summary: We show that an unambiguous proof of reality of the quantum states gleaned from the reality of quantum fields can also provide an explicit substantiation of the reality of quantum states in Hilbert space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The persistent debate about the reality of a quantum state has recently come
under limelight because of its importance to quantum information and the
quantum computing community. Almost all of the deliberations are taking place
using the elegant and powerful but abstract Hilbert space formalism of quantum
mechanics developed with seminal contributions from John von Neumann. Since it
is rather difficult to get a direct perception of the events in an abstract
vector space, it is hard to trace the progress of a phenomenon. Among the
multitude of recent attempts to show the reality of the quantum state in
Hilbert space, the Pusey-Barrett-Rudolph theory gets most recognition for their
proof. But some of its assumptions have been criticized, which are still not
considered to be entirely loophole free. A straightforward proof of the reality
of the wave packet function of a single particle has been presented earlier
based on the currently recognized fundamental reality of the universal quantum
fields. Quantum states like the atomic energy levels comprising the wave
packets have been shown to be just as real. Here we show that an unambiguous
proof of reality of the quantum states gleaned from the reality of quantum
fields can also provide an explicit substantiation of the reality of quantum
states in Hilbert space.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Locality in the Schroedinger Picture of Quantum Mechanics [0.0]
We explain how the so-called Einstein locality is to be understood in the Schr"odinger picture of quantum mechanics.
Contrary to some beliefs that quantum mechanics is incomplete, it is, in fact, its overcompleteness as exemplified by different pictures of quantum physics, that points to the same underlying reality.
arXiv Detail & Related papers (2023-12-07T21:16:39Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - The quantum condition space [0.0]
We introduce the concept of the condition space, which is found to be the dual space of the classical outcome space of bit strings.
The quantum condition space permits the existence of entangled conditions that have no classical equivalent.
The relation between the condition space and quantum circuits provides insights into how quantum states are collectively modified by quantum gates.
arXiv Detail & Related papers (2021-07-12T20:11:51Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - The Concept 'Indistinguishable' [0.0]
All ordinary matter is made of electrons, protons, neutrons, and photons and they are all indistinguishable particles.
The concept of indistinguishable particles has proved elusive, in part because of the interpretational difficulties that afflict quantum theory.
I offer a deflationary reading of the concept "indistinguishable" that is identical to the Gibbs concept of "generic phase"
arXiv Detail & Related papers (2020-07-28T13:42:43Z) - Bell Nonlocality and the Reality of Quantum Wavefunction [0.0]
Status of quantum wavefunction is one of the most debated issues in quantum foundations.
We show that the observed phenomenon of quantum nonlocality cannot be incorporated in a class of $psi$-epistemic models.
arXiv Detail & Related papers (2020-05-18T10:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.