'A net for everyone': fully personalized and unsupervised neural
networks trained with longitudinal data from a single patient
- URL: http://arxiv.org/abs/2210.14228v1
- Date: Tue, 25 Oct 2022 11:07:24 GMT
- Title: 'A net for everyone': fully personalized and unsupervised neural
networks trained with longitudinal data from a single patient
- Authors: Christian Strack, Kelsey L. Pomykala, Heinz-Peter Schlemmer, Jan
Egger, Jens Kleesiek
- Abstract summary: We train personalized neural networks to detect tumor progression in longitudinal datasets.
For each patient, we trained their own neural network using just two images from different timepoints.
We show that using data from just one patient can be used to train deep neural networks to monitor tumor change.
- Score: 0.5576716560981031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise in importance of personalized medicine, we trained personalized
neural networks to detect tumor progression in longitudinal datasets. The model
was evaluated on two datasets with a total of 64 scans from 32 patients
diagnosed with glioblastoma multiforme (GBM). Contrast-enhanced T1w sequences
of brain magnetic resonance imaging (MRI) images were used in this study. For
each patient, we trained their own neural network using just two images from
different timepoints. Our approach uses a Wasserstein-GAN (generative
adversarial network), an unsupervised network architecture, to map the
differences between the two images. Using this map, the change in tumor volume
can be evaluated. Due to the combination of data augmentation and the network
architecture, co-registration of the two images is not needed. Furthermore, we
do not rely on any additional training data, (manual) annotations or
pre-training neural networks. The model received an AUC-score of 0.87 for tumor
change. We also introduced a modified RANO criteria, for which an accuracy of
66% can be achieved. We show that using data from just one patient can be used
to train deep neural networks to monitor tumor change.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Predicting recovery following stroke: deep learning, multimodal data and
feature selection using explainable AI [3.797471910783104]
Major challenges include the very high dimensionality of neuroimaging data and the relatively small size of the datasets available for learning.
We introduce a novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interest extracted from MRIs.
We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners.
arXiv Detail & Related papers (2023-10-29T22:31:20Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
We propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks.
Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints.
arXiv Detail & Related papers (2022-04-21T23:29:52Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor
Segmentation [2.741266294612776]
We present a CNN-Transformer combined model called BiTr-Unet for brain tumor segmentation on multi-modal MRI scans.
The proposed BiTr-Unet achieves good performance on the BraTS 2021 validation dataset with mean Dice score 0.9076, 0.8392 and 0.8231, and mean Hausdorff distance 4.5322, 13.4592 and 14.9963 for the whole tumor, tumor core, and enhancing tumor, respectively.
arXiv Detail & Related papers (2021-09-25T04:18:34Z) - A Joint Graph and Image Convolution Network for Automatic Brain Tumor
Segmentation [1.3381749415517017]
We present a joint graph convolution-image convolution neural network as our submission to the Brain Tumor (BraTS) 2021 challenge.
We model each brain as a graph composed of distinct image regions, which is initially segmented by a graph neural network (GNN)
The tumorous volume identified by the GNN is further refined by a simple (voxel) convolutional neural network (CNN) which produces the final segmentation.
arXiv Detail & Related papers (2021-09-12T18:16:59Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Predictive modeling of brain tumor: A Deep learning approach [0.0]
This paper presents a Convolutional Neural Network (CNN) based transfer learning approach to classify the brain MRI scans into two classes using three pre-trained models.
Experimental results show that the Resnet-50 model achieves the highest accuracy and least false negative rates as 95% and zero respectively.
arXiv Detail & Related papers (2019-11-06T09:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.