Classification and Self-Supervised Regression of Arrhythmic ECG Signals
Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2210.14253v1
- Date: Tue, 25 Oct 2022 18:11:13 GMT
- Title: Classification and Self-Supervised Regression of Arrhythmic ECG Signals
Using Convolutional Neural Networks
- Authors: Bartosz Grabowski, Przemys{\l}aw G{\l}omb, Wojciech Masarczyk,
Pawe{\l} P{\l}awiak, \"Ozal Y{\i}ld{\i}r{\i}m, U Rajendra Acharya, Ru-San Tan
- Abstract summary: We propose a deep neural network model capable of solving regression and classification tasks.
We tested the model on the MIT-BIH Arrhythmia database.
- Score: 13.025714736073489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretation of electrocardiography (ECG) signals is required for
diagnosing cardiac arrhythmia. Recently, machine learning techniques have been
applied for automated computer-aided diagnosis. Machine learning tasks can be
divided into regression and classification. Regression can be used for noise
and artifacts removal as well as resolve issues of missing data from low
sampling frequency. Classification task concerns the prediction of output
diagnostic classes according to expert-labeled input classes. In this work, we
propose a deep neural network model capable of solving regression and
classification tasks. Moreover, we combined the two approaches, using unlabeled
and labeled data, to train the model. We tested the model on the MIT-BIH
Arrhythmia database. Our method showed high effectiveness in detecting cardiac
arrhythmia based on modified Lead II ECG records, as well as achieved high
quality of ECG signal approximation. For the former, our method attained
overall accuracy of 87:33% and balanced accuracy of 80:54%, on par with
reference approaches. For the latter, application of self-supervised learning
allowed for training without the need for expert labels. The regression model
yielded satisfactory performance with fairly accurate prediction of QRS
complexes. Transferring knowledge from regression to the classification task,
our method attained higher overall accuracy of 87:78%.
Related papers
- EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
We demonstrate improved performance for ECG classification using hybrid features and three different models.
An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model.
Another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments.
arXiv Detail & Related papers (2022-06-14T12:14:40Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Supraventricular Tachycardia Detection and Classification Model of ECG
signal Using Machine Learning [0.0]
Investigation on the electrocardiogram (ECG) signals is an essential way to diagnose heart disease.
This work presents a supraventricular arrhythmia prediction model consisting of a few stages, including filtering of noise.
We have developed a classification model based on machine learning that can successfully categorize different types of supraventricular tachycardia.
arXiv Detail & Related papers (2021-12-24T05:48:26Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
This paper proposes a deep learning model for real-time segmentation of heartbeats.
The proposed algorithm, named as the DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model.
arXiv Detail & Related papers (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.