論文の概要: End-to-end Tracking with a Multi-query Transformer
- arxiv url: http://arxiv.org/abs/2210.14601v1
- Date: Wed, 26 Oct 2022 10:19:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 14:58:29.797572
- Title: End-to-end Tracking with a Multi-query Transformer
- Title(参考訳): マルチクエリ変換器によるエンドツーエンドトラッキング
- Authors: Bruno Korbar and Andrew Zisserman
- Abstract要約: マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
- 参考スコア(独自算出の注目度): 96.13468602635082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple-object tracking (MOT) is a challenging task that requires
simultaneous reasoning about location, appearance, and identity of the objects
in the scene over time. Our aim in this paper is to move beyond
tracking-by-detection approaches, that perform well on datasets where the
object classes are known, to class-agnostic tracking that performs well also
for unknown object classes.To this end, we make the following three
contributions: first, we introduce {\em semantic detector queries} that enable
an object to be localized by specifying its approximate position, or its
appearance, or both; second, we use these queries within an auto-regressive
framework for tracking, and propose a multi-query tracking transformer
(\textit{MQT}) model for simultaneous tracking and appearance-based
re-identification (reID) based on the transformer architecture with deformable
attention. This formulation allows the tracker to operate in a class-agnostic
manner, and the model can be trained end-to-end; finally, we demonstrate that
\textit{MQT} performs competitively on standard MOT benchmarks, outperforms all
baselines on generalised-MOT, and generalises well to a much harder tracking
problems such as tracking any object on the TAO dataset.
- Abstract(参考訳): マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
Our aim in this paper is to move beyond tracking-by-detection approaches, that perform well on datasets where the object classes are known, to class-agnostic tracking that performs well also for unknown object classes.To this end, we make the following three contributions: first, we introduce {\em semantic detector queries} that enable an object to be localized by specifying its approximate position, or its appearance, or both; second, we use these queries within an auto-regressive framework for tracking, and propose a multi-query tracking transformer (\textit{MQT}) model for simultaneous tracking and appearance-based re-identification (reID) based on the transformer architecture with deformable attention.
この定式化により、トラッカーはクラスに依存しない方法で動作し、モデルをエンドツーエンドにトレーニングすることができる。最後に、 \textit{MQT} が標準MOTベンチマークで競争力を発揮し、一般化MOTで全てのベースラインを上回り、TAOデータセット上のオブジェクトをトラッキングするなど、より難しいトラッキング問題にうまく一般化する。
関連論文リスト
- HSTrack: Bootstrap End-to-End Multi-Camera 3D Multi-object Tracking with Hybrid Supervision [34.7347336548199]
カメラベースの3Dマルチオブジェクトトラッキング(MOT)では、一般的な手法はトラッキング・バイ・クエリー・プロパゲーションのパラダイムに従っている。
本稿では,HSTrackを提案する。HSTrackは,マルチタスク学習を協調して検出・追跡する新しいプラグイン・アンド・プレイ方式である。
論文 参考訳(メタデータ) (2024-11-11T08:18:49Z) - ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
多視点カメラによる3D MOTのための新しいエンドツーエンドフレームワークであるADA-Trackを紹介する。
エッジ拡張型クロスアテンションに基づく学習可能なデータアソシエーションモジュールを提案する。
我々は、この関連モジュールをDTRベースの3D検出器のデコーダ層に統合する。
論文 参考訳(メタデータ) (2024-05-14T19:02:33Z) - OmniTracker: Unifying Object Tracking by Tracking-with-Detection [119.51012668709502]
OmniTrackerは、完全に共有されたネットワークアーキテクチャ、モデルウェイト、推論パイプラインですべてのトラッキングタスクを解決するために提供されている。
LaSOT、TrackingNet、DAVIS16-17、MOT17、MOTS20、YTVIS19を含む7つの追跡データセットの実験は、OmniTrackerがタスク固有の追跡モデルと統合された追跡モデルの両方よりも、オンパーまたはそれ以上の結果を達成することを示した。
論文 参考訳(メタデータ) (2023-03-21T17:59:57Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
異なるシナリオにおけるトラッキング問題に1つのパラダイムで対処するために,UTT(Unified Transformer Tracker)を提案する。
SOT(Single Object Tracking)とMOT(Multiple Object Tracking)の両方を対象とするトラックトランスフォーマーを開発した。
論文 参考訳(メタデータ) (2022-03-29T01:38:49Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - TrackFormer: Multi-Object Tracking with Transformers [92.25832593088421]
TrackFormerはエンコーダデコーダトランスフォーマーアーキテクチャに基づくエンドツーエンドのマルチオブジェクトトラッキングおよびセグメンテーションモデルです。
新しいトラッククエリはDETRオブジェクト検出器によって生成され、時間とともに対応するオブジェクトの位置を埋め込む。
trackformerは新しいトラッキング・バイ・アテンションパラダイムでフレーム間のシームレスなデータ関連付けを実現する。
論文 参考訳(メタデータ) (2021-01-07T18:59:29Z) - End-to-End Multi-Object Tracking with Global Response Map [23.755882375664875]
画像シーケンス/映像を入力とし、学習対象の位置と追跡対象を直接出力する、完全にエンドツーエンドのアプローチを提案する。
具体的には,提案した多目的表現戦略により,グローバル応答マップをフレーム上で正確に生成することができる。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-07-13T12:30:49Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
オブジェクトのデータセットの追跡は2,907本の高解像度ビデオで構成され、平均で30分の長さの多様な環境でキャプチャされる。
ビデオの任意の時点で移動するオブジェクトにアノテータにラベルを付け、ファクトラムの後に名前を付けるように求めます。
我々の語彙は、既存の追跡データセットと著しく大きく、質的に異なる。
論文 参考訳(メタデータ) (2020-05-20T21:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。