Semi-Supervised Learning Based on Reference Model for Low-resource TTS
- URL: http://arxiv.org/abs/2210.14723v1
- Date: Tue, 25 Oct 2022 07:48:07 GMT
- Title: Semi-Supervised Learning Based on Reference Model for Low-resource TTS
- Authors: Xulong Zhang, Jianzong Wang, Ning Cheng, Jing Xiao
- Abstract summary: We propose a semi-supervised learning method for neural TTS in which labeled target data is limited.
Experimental results show that our proposed semi-supervised learning scheme with limited target data significantly improves the voice quality for test data to achieve naturalness and robustness in speech synthesis.
- Score: 32.731900584216724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most previous neural text-to-speech (TTS) methods are mainly based on
supervised learning methods, which means they depend on a large training
dataset and hard to achieve comparable performance under low-resource
conditions. To address this issue, we propose a semi-supervised learning method
for neural TTS in which labeled target data is limited, which can also resolve
the problem of exposure bias in the previous auto-regressive models.
Specifically, we pre-train the reference model based on Fastspeech2 with much
source data, fine-tuned on a limited target dataset. Meanwhile, pseudo labels
generated by the original reference model are used to guide the fine-tuned
model's training further, achieve a regularization effect, and reduce the
overfitting of the fine-tuned model during training on the limited target data.
Experimental results show that our proposed semi-supervised learning scheme
with limited target data significantly improves the voice quality for test data
to achieve naturalness and robustness in speech synthesis.
Related papers
- Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models [39.37532848489779]
We propose Error Norm Truncation (ENT), a robust enhancement method to the standard training objective that truncates noisy data.
We show that ENT improves generation quality over standard training and previous soft and hard truncation methods.
arXiv Detail & Related papers (2023-10-02T01:30:27Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
We propose noise entropy regularisation (NoiER) as an efficient learning paradigm that solves the problem without auxiliary models and additional data.
The proposed approach improved traditional OOD detection evaluation metrics by 55% on average compared to the original fine-tuned models.
arXiv Detail & Related papers (2021-08-29T06:58:28Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios.
The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task.
arXiv Detail & Related papers (2021-04-03T20:57:57Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
In this work, we explore fine-tuning methods of BERT -- a pre-trained Transformer based language model.
Our experimental results show an advantage in model performance by maximizing the approximate knowledge gain of the model.
We analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters.
arXiv Detail & Related papers (2020-12-04T08:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.